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4 DSP architectural basics
¢ Improved performance through increased parallelism
¢ Allowing more operations per instruction
+ Enhanced conventional DSPs
+ Single-instruction, multiple-data (SIMD)
e Issuing multiple instructions per instruction cycle
¢ VLIW DSPs
* Superscalar DSPs
¢ CPUs with SIMD extensions
® DSP/microcontroller hybrids
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A Motivating Example:

FIR Filtering
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X = input samples
Vv = output samples
h = filter coefficients @~ "~~~ " """ °~ il 2 X*h

D = unit time delay

Filter characteristics

governed by number of taps,

selection of filter coefficients. ‘BDTI
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FIR Filter on a Typical GPP
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(Computes one tap per loop iteration)
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Problems:
* Memory bandwidth bottleneck

+ Control code and addressing
overhead
* Possibly slow multiply




Early DSP Architecture
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FIR Filteron a

Conventional DSP

DO dotprod UNTIL CE;
dotprod:
ME=ME+MXO*MYOQ0(3233) ,MX0=DM({(IO0O MO) MYQ=PM({(I4d 1M4d);
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Baseline: "Conventional DSPs”

¢ Common attributes:

e 16- or 24-bit fixed-point (fractional), or
32-bit floating-point anthmetic

e 16-, 24-, 32-bit instructions

¢ One instruction per cycle ("single issue")

e Complex, "compound" instructions encoding
many operations

¢ Highly constrained, non-orthogonal architectures

BT
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Baseline: "Conventional DSPs”

4 Common attributes (cont.):

e Dedicated addressing hardware w/ specialized
addressing modes

e Multiple-access on-chip memory architecture

e Dedicated hardware for loops and other
execution control

e Specialized on-chip peripherals and IfO interfaces

e Low cost, low power, low memory usage

BT
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Increasing Parallelism

4 Boosting performance beyond the increases afforded
by faster clock speeds requires the processor to do
more work in every clock cycle. How?

4 By increasing the processors' parallelism in one of the
following ways:

¢ Increase the number of operations that can be
performed in each instruction

e Increase the number of instructions that can be
issued and executed in every cycle

BT
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More Operations Per Instruction

4 How to increase the number of operations that can be
performed in each instruction?

e Add execution units (multiplier, adder, etc.)

+ Enhance the instruction set to take advantage
of the additional hardware

» Possibly, increase the instruction word width

» Use wider buses to keep the processor fed with
data

e Add SIMD capabilities ‘BDT
|
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More Instructions Per Clock Cycle

4 How to increase the number of instructions that are
issued and executed in every clock cycle?

e Use VLIW techniques
e Use superscalar techniques

# VLIW and superscalar architectures typically use
simple, RISC-based instructions rather than the
complex, compound instructions traditionally used in
DSP processors

BT
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New Architectures for DSP

4 Enhanced conventional DSPs
e Examples: Lucent DSP16xxx, ADI ADSP-2116x

¢ VLIW (Very Long Instruction Word) DSPs
e BExamples: TI TMS320C6x¢x, Siemens Carmel

¢ Superscalar DSPs
e Example: ZSP ZS5P164xx

# General-purpose processors, hybrids:

e Examples: PowerPC with AltiVec, TriCore

BT
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Enhanced Conventional DSPs

More parallelism via:

4 Multi-operation data path

e 2.9d., 2nd multiplier, adder

e SIMD capahilities (ranging from limited to extensive)
% Highly specialized hardware in core

e 2.g., application-oriented data path operations

¢ Co-processors
e Viterbi decoding, FIR filtering, etc.

Exampile: Lucent DSP16xxx, ADI ADSP-21 16x

BT
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FIR Filtering on the DSP16>0(x

Do nTaps /2
al=al0+p0+pl pO=xh*vh pl=xl*yl yv=*r0++ x=*ptl++
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16 bits | 16 bits

16 bits 16 bits
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# Splits words into smaller chunks for parallel operations
# Some SIMD processors support multiple data widths (16-

bit, 8-hit, ..)

¢ Examples: Lucent DSP16&ooc, ADI ADSP-2116x
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SIMD Extensions

4 SIMD is becoming more and more common in DSP
Processors

e Limited SIMD capabilities on the DSP16xxx

e Full SIMD capabilites (enabled by dual data paths) on
ADI's ADSP-2116x

4 SIMD extensions for CPUs are also common. Why?
¢ Make good use of existing wide resources
» Buses, data path

¢ Significantly accelerate many DSP/image/video
algorithms without a radical architectural change 'BDT
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SIMD Challenges

¢ Algorithms, data organization must be amenable to data-
parallel processing

¢ Programmers must be creative, and sometimes pursue
altemative algorithms

e Reorganization penalties can be significant

e Most effective on algorithms that process large blocks
of data

BT
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SIMD Challenges

% Loss of generality

e Each instruction processes N elements
(typically 4 <N < 8)
e Loops often must be unrolled for speed

4 High program memory usage
e Loop unrolling
e Re-arranging data for SIMD processing

e Merging partial results

¢ Often, only fixed-point supported

i@ 1999 Berkeley Design Technology, Inc.
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Enhanced Conventional DSPs

¢ Advantages:

e Allows incremental performance increases while
maintaining competitive cost, power, code density

e Compatibility is possible; similanty is likely

¢ Disadvantages:
e Increasingly complex, hard-to-program architectures

¢ Poor compiler targets
e How much farther can we get with this approach?

BT
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Superscalar vs VLIW

Memory Instruction Execution Units
scheduling,
INS 1 dispatch ALU MAC | BMU (ee e
s 2 D INS 1| INS 2
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VLIW (Very Long Instruction Word)

Examples of current & upcoming VLIW-based
architectures for DSP applications:

o TI TMS320C6xx, Siemens Carmel, ADI TigerSHARC,
StarCore 140

Characteristics:

e Multiple independent operations per cycle, packed
into single large "instruction” or "packet”

e More regular, orthogonal, RISC-like operations

BT

e Large, uniform register sets
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Example VLIW Data Path (C6x)

2 Independent
Data Paths " °F" T T
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On-Chip Data Memory
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FIR Filtering on the 'C6Xx

LOOP:
ADD .L1 AO0,A3,A0
ADD .L2 B1,B7,B1

MPYHL .M1X A2, B2,A3
MPYLH .M2X AZ,B2,B7
LDW .D2 *B4d++,B2
LDW .D1 *AT--_ A2
[BO] ADD .82 -1,BO,RO
[B0] B .21 LOGP

LOOP ends here

Ll
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VLIW Architectures

¢ Advantages:

e Increased performance

e More regular architectures

+ Potentially easier to program, better compiler
targets

e Scalable (?)
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VLIW Architectures

¢ Disadvantages:

e New kinds of programmer/compiler complexity

* Programmer (or code-generation tool) must keep
track of instruction scheduling

» Deep pipelines and long latencies can be
confusing, may make peak performance elusive

e Code size bloat

+ High program memory bandwidth requirements

BT

¢ High power consumption
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Superscalar Architectures

Current superscalar architectures for DSP apps:
e /5P 75P164xx, Siemens TriCore (DSP/uC hybrid)

Characteristics:

e Bormmow techniques from high-end CPUs

e Multiple (usually 2-4) instructions issued per instruction
cycle
+ Instruction scheduling handled in hardware, not by
programmer

s RISCHike instruction set
e Lots of parallelism DT
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FIR Filtering on the ZSP164xx

LOOP: LDDUO R4, R1l4, 2
LDDU R8, R15, 2
MAC2 A R4, RS8
AGNO LOOP

(A1l four instructions execute in a =ingle cycle)
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Superscalar Architectures

4 Advantages:

e Large jump in performance

e More regular architectures (potentially easier to
program, better compiler targets)

¢ Programmer (or code generation tool) isn't
required to schedule instructions

+ But peak performance may be hard to achieve
without hand-scheduling

e Code size not increased significantly

BT
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Superscalar Architectures

¢ Disadvantages:
e Energy consumption is a major challenge

e Dynamic behavior complicates software development
+ Execution-time variability can be a hazard
+ Code optimization is challenging

i@ 1999 Berkeley Design Technology, Inc.
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Hybrid DSP /Microcontrollers

4 GPPs for embedded applications are starting to address
DSP needs

4 Embedded GPPs typically don't have the
advanced features that affect execution time

predictability, so are easier to use for DSP

i@ 1999 Berkeley Design Technology, Inc.
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Hybrid DSP /Microcontrollers

Approaches

¢ Multiple processors on a die
e 2.g., Motorola DSP5665x
e DSP co-processor
s 2.g., ARM Piccolo
e DSP brain transplant in existing pC
e 2., SH-DSP
e Microcontroller tweaks to existing DSP
e 2,qg., TM5320C2 /xx
¢ Totally new design
e 2,g,, INCore

i@ 1999 Berkeley Design Technology, Inc.
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Hybrid DSP /Microcontrollers

Advantages, Disadvantages

e Multiple processors on a die

« Two entirely different instruction sets,
debugging tools, efc.

+ Both cores can operate in parallel
» No resource contention...
¢ ..but probably resource duplication

i@ 1999 Berkeley Design Technology, Inc.
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Hybrid DSP /Microcontrollers

Advantages, Disadvantages

e DSP co-processor

+ May result in complicated programming model
— Dual instruction sets
— In ARM7/Piccolo case, possible deadlocks

¢ Possible resource contention

— e.g., Piccolo requires ARM7 to perform all data
transfers

+ May allow both cores to operate in parallel

i@ 1999 Berkeley Design Technology, Inc.
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Hybrid DSP /Microcontrollers

Advantages, Disadvantages

¢ DSP brain transplant in existing nC,
microcontroller tweaks to existing DSP

+ Simpler programming model than dual cores
+ Constraints imposed by "legacy" architecture

e Totally new design
» Avoids legacy constraints
» May resultin a cleaner architecture
» Adopting a totally new architecture can be risky

BT
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# The varety, performance range of processors for DSP is
exploding

e Better selection, flexihility,...

e ...but harder to choose the "best" processor

4 DSPs, microcontrollers, and CPUs are swapping architectural
tricks

e CPU, nC vendors recognize the need for DSP capabilities

e DSP, nC vendors don't want to lose sockets to each
other

e Whatis good in a CPU may not be good in a DSP; be
careful of issues such as execution-time
predictability, programmabhility, etc. -BDL
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For More Information...

Free resources on BDTI's web site,

http://www. bdti.com

e DSP Processors Hit the Mainstream
covers DSP architectural basics and new
developments. QOriginally printed in
IEEE Computer Magazine.

e Fvaluating DSP Processor Performance,
a white paper from BDTIL.

¢ Numerous other BDTI article reprints, slides
e comp.dsp FAQ DT
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