
by Jim Turley and Harri Hakkarainen

In a leap to the front of the pack, Texas Instruments unleashed

the most radical digital-signal processor to date, a VLIW design that

runs at 200 MHz and executes up to eight instructions at once. Under

ideal conditions, the high-end DSP runs at an astonishing 1,600

MIPS—5× to 10× the performance of today’s leading DSP chips.

The new TMS320C6201 will be the first in a family of new

DSPs from TI based on the ’C6x core. When the chip begins produc-

tion in 3Q97, it will be the fastest—and nearly the most expensive—

fixed-point DSP available. TI hopes to appeal to makers of telecom-

munications equipment, both wired and wireless.

The chip relies on very long instruction word (VLIW) tech-

niques to achieve its impressive performance. VLIW has appeared

recently in media processors from Chromatic and Philips, chips

that are also DSPs in a sense. This once-esoteric approach is now

becoming almost routine in highly parallelizable applications in

media- and signal-processing.

Eight-Way VLIW, 200 MHz—Oh, My!
The ’C6x, which TI has been developing for three years, is

incompatible with anything the company has done

before. In many respects, the chip resembles a high-end

RISC processor with an unusual instruction set more

than a conventional fixed-point DSP.

The core is eight-way superscalar, has an 11-stage

pipeline, and maintains two sets of four execution units,

shown in Figure 1. The part is nominally divided in half,

with 16 registers and four execution units on each side (A

and B). Crossovers allow limited use of the A registers by

B-side execution units, and vice versa. With all eight exe-

cution units running, the ’C6x can perform 1.6 billion

operations per second at 200 MHz.

The four execution units on each side are a matched

set. Each side contains a 40-bit integer ALU, a 40-bit

shifter, a 16-bit multiplier, and a 32-bit adder that is also

used for address generation. Each of the execution units

has access to the same resources and, with only a few

exceptions, completes its operation in a single clock cycle.

The two 40-bit ALUs, or L units, perform arithmetic and log-

ical compares, normalization, and bit-count operations. All L-unit

operations complete in one clock cycle.

Multiplication is handled by the M units, which can perform

both signed and unsigned 16×16→32-bit multiplication. Latency is

two cycles, with single-cycle throughput.

Both S units have a 32-bit ALU and a 40-bit shifter. The S

units can perform some of the same 32-bit arithmetic operations as

the L units, along with 32-bit and 40-bit shifts. The S units are also

responsible for branching and branch-address generation. A 32-bit

adder allows the D units to perform simple arithmetic operations,

but their primary purpose is address generation.

Registers Are Massively Ported
From the programmer’s perspective, the ’C6x has 32 general-

purpose 32-bit registers: A0–A15 and B0–B15. Any register can

hold any address or data value; 40-bit results are stored in adjacent

registers. Five of the registers—A1, A2, and B0–B2—can be used

Article Reprint

T H E I N S I D E R S ’ G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

MICROPROCESSOR
VOLUME 11, NUMBER 2

FEBRUARY 17, 1997

REPORT
TI’s New ’C6x DSP Screams at 1,600 MIPS
Radical Design Offers 8-Way Superscalar Execution, 200-MHz Clock Speed

32

832

32 32 32 32 32 32
32

32 32 32

256

Register Bank A
(16 × 32)

Register Bank B
(16 × 32)

Program Fetch
Instruction Dispatch
Instruction Decode

L1 S1 M1 D1

ALU
ALU,

Shifter Multiply add/sub

L2 S2

ALU
ALU,
shifter

M2

Multiply

D2

add/sub

Data Bus 1 (32 bits)Program
Memory

(16K × 32)

Data
Memory

(32K × 16)

Control/Status
registers

Data Bus 2 (32 bits)

Figure 1. This block diagram of the ’C6x core illustrates the eight execution units,
arranged in two sets of four. The 256-bit-wide instruction bus allows the chip to
fetch eight 32-bit instructions per cycle.

2

© M I C R O D E S I G N R E S O U R C E S F E B R U A R Y 1 7 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

for conditional tests (A0 is reserved for future expansion). Finally,

four registers from each bank serve special duty as circular-

addressing pointers.

Both register banks have nine 32-bit read ports and six 32-bit

write ports, allowing all four execution units in a bank to access the

same register simultaneously, if required. Two crossovers, one in

each direction, provide limited access to the 16 registers from the

opposite bank. Multiplier M1, for example, can take one operand

from any B register. With only one pair of crossovers, data crossings

are limited to one execution unit per bank per cycle. In the example,

the L1, S1, and D1 units would all have to make do with data from

the A registers. This restriction will probably be most apparent

when programs try to perform two simultaneous memory accesses

with address pointers from the same register bank.

Although both the L and S units can perform 40-bit calcula-

tions, there is only one 40-bit write port per bank to the register file.

It is the programmer’s responsibility to avoid generating two 40-bit

results in the same cycle.

Instruction Set Shows VLIW Techniques
The ’C6x is the first VLIW chip from TI and the first conventional

DSP with VLIW instructions. The core devours eight 32-bit instruc-

tions at once from its on-chip 256-bit instruction bus. All eight

instructions are sent to the eight execution units before the next

256-bit meta-instruction is fetched.

In TI’s nomenclature, the eight-instruction group is known

as a fetch packet. The ’C6x always fetches a complete fetch packet

at once, and fetch packets must be 32-byte aligned. However, not

all eight instructions in the fetch packet are necessarily executed

simultaneously.

Although there are eight instructions in each fetch packet and

eight execution units, each instruction does not necessarily corre-

spond to one execution unit; the instructions are not position-

dependent within the fetch packet, which is the traditional VLIW

method. Instead, each instruction is encoded for a specific execu-

tion unit. An ADD instruction, for example, can be encoded for the

L1, L2, S1, S2, D1, or D2 unit. Programmers can explicitly dictate

the binding of instructions or leave it to the assembler or compiler.

Under ideal circumstances, all eight of the ’C6x’s execution

units can be kept busy on every cycle. In practice, data dependen-

cies, resource conflicts, multicycle operations, and other realities of

programming will force less-than-total utilization of the core’s

resources. Rather than waste space in the fetch packet by padding

with NOPs, TI allows multiple groups of instructions in a single

fetch packet.

Independent of the 256-bit fetch packet, the ’C6x defines an

execute packet, which can be 1–8 instructions in the fetch packet. All

instructions in an execute packet are dispatched together. It is the

programmer’s (or compiler’s) responsibility to guarantee that all

instructions in the execute packet can, indeed, be dispatched simul-

taneously—the ’C6x hardware does no dependency checking

among instructions.

Execute packets are identified by the least significant bit in

each instruction. If the bit is set, the instruction may be dispatched

in parallel with the subsequent (next higher-addressed) instruction.

If all eight instructions in the fetch packet have their LSB set, all

eight will be dispatched simultaneously. If none have their LSB set,

the eight instructions in the fetch packet will be executed serially.

Figure 2 illustrates an example with a four-instruction execute

packet followed by two two-instruction packets.

VLIW Approach Breaks Up Basic Operations
Table 1 lists the entire ’C6x instruction set. Every ’C6x instruction

(including the lone branch) can be made conditional, based on the

zero/nonzero status of the five condition registers. Theoretically, all

eight instructions in a packet could each be predicated on some dif-

ferent condition. This type of predicated execution is also used in

the Philips TM-1, a VLIW media processor.

The ’C6x has none of the moderately complex instructions

most DSP chips have. Multiply-accumulate, for example, is han-

dled as a multiply followed by a separate add. Fetching a memory-

resident coefficient would be handled as a third, independent,

operation. Because it divides conventional DSP functions into sep-

arate instructions, the ’C6x needs a somewhat different definition

of MIPS than most DSPs. A simple 16-bit MAC becomes three dif-

ferent operations on the ’C6x, making the metric of 1,600 MIPS

somewhat misleading. Like early RISC chips, the ’C6x thrives on

high clock rates and simple operations.

Indexed addressing and loops must also be explicitly coded in

software. There is no intrinsic zero-overhead loop feature in the

’C6x. Loop counters must be decremented, and a conditional

branch used to return to the top of the loop. Index registers do not

automatically increment or decrement; their values must be modi-

fied explicitly.

Lots of Memory
TI’s initial implementation of the ’C6x architecture is the

320C6201. The part has a whopping 128 Kbytes of on-chip mem-

ory, evenly divided between program and data space. The program

31 0
1 1 1 0 1 0 1 0

Always 0

Execution
Packet

Execution
Packet

Execution
Packet

256-bit fetch packet (3 execution packets)

Figure 2. The least significant bit of each instruction in a fetch packet
indicates whether the instruction can be executed in parallel with its
successor. The instructions in this example will be executed in three
separate packets of four, two, and two instructions.

P r i c e & Av a i l a b i l i t y

TI’s TMS320C6201 is sampling now in a 352-contact BGA

package. The 196-mm2 part is fabricated in a 0.25-micron five-

layer-metal process and runs from a 2.5-V supply. Pricing has

been set at $135 in 1,000-unit quantities. Production is sched-

uled for 3Q97. For more information, contact TI (Denver) at

800.477.8924, extension 4500, or visit www.ti.com/sc/C6x.

3

© M I C R O D E S I G N R E S O U R C E S F E B R U A R Y 1 7 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

memory has a 256-bit path into the ’C6x core, allowing it to trans-

fer an entire eight-word fetch packet in one cycle. At the user’s

option, the program memory can also be configured as a 64K

direct-mapped cache.

The ’6201’s data memory is divided into four 16K banks, each

with a 16-bit bus to the execution units. All four banks can be

accessed simultaneously, but two simultaneous accesses to the same

bank are not allowed. An on-chip access rate of two words per cycle

is comparable to that of most DSPs. So even though the ’C6x can

execute far more instructions per cycle than other DSPs, it does not

have commensurately higher data memory bandwidth.

Here, the ’C6x shows some RISC-like tendencies. The chip

performs best with register-based operands, exacting a penalty for

frequent memory accesses. TI expects the large, heavily ported reg-

ister file will fill in for RAM in many cases.

Branches Introduce Huge Bubble
As in many high-end CPUs, the ’C6x’s long pipeline is both its trea-

sure and its burden. The chip could probably never reach 200 MHz

or beyond without its 11-stage pipeline, but the long pipe also

exacts a severe penalty for taken branches.

With no branch prediction, all taken branches introduce a

five-cycle delay before the pipeline refills from the branch target, as

Figure 3 illustrates. Unlike many CPUs, the part executes instruc-

tions in the branch delay slot, which in the ’C6x’s case is a whopping

40 instructions (5 cycles × 8 instructions).

This huge delay slot leads to some unusual programming

practices (as if ’C6x code weren’t difficult enough to follow). One

option is to make each instruction in the subsequent five fetch pack-

ets conditional, using the same condition as the original branch.

Conversely, execution of these instructions could be predicated on

the opposite condition, executing only if the branch is not taken.

Manual scheduling on the ’C6x exacts its own peculiar toll on

programmers. Figure 4 shows the kernel of a two-tap FIR filter done

in a single repeating execute packet. It performs two multiplies, two

adds, and two loads while it decrements the loop counter and

branches back to itself.

The effects of this packet are difficult to deduce from a cur-

sory reading of the source code, complicated by the fact that adds,

multiplies, loads, and branches all have different latencies (one, two,

four, and five clocks, respectively).

On any given iteration of this loop, n, the ’C6x resolves the

multiplies executed on iteration n-2, the additions from iteration

n-1, the data loaded on iteration n-5, and the branch encountered

on iteration n-6. Once under way, this loop executes two taps per

cycle, which is better than most DSPs—and at 200 MHz, a lot faster.

B
BIRP
BNRP

Branch
Branch using interrupt return pointer
Branch using NMI return pointer

AND
NOT
OR
XOR
SHL
SHR{u}
SSHL

Logical AND
Logical invert
Logical OR
Logical XOR
Shift left
Shift right {unsigned}
Shift left with saturation

LD{x}
LD
ST{x}
ST
STP
MV
MVC
MVK{L,H}

Load {byte, half, word, double}
Load with 15-bit offset
Store {byte, half, word}
Store with 15-bit offset
Store to program space
Move register to register
Move control register
Move constant to {upper, lower} half

IDLE
NOP

Wait for interrupt
No operation

CMPEQ
CMPGT
CMPGTU
CMPLT
CMPLTU

Compare for equality
Compare for greater-than
Compare for greater-than, unsigned
Compare for less-than
Compare for less-than, unsigned

†

*

†

†

†
*

ABS
ADD{U}
ADDA{x}
ADDK
ADD2
SADD
MPY{U/S}
MPYH{U/S}
MPYHL{U/S}
MPYLH{U/S}
SMPY
SUB{U}
SUBA{x}
SSUB
SUBC
SUB2
ZERO
CLR
SET
EXT{U}
NEG
NORM
LMBD
SAT

Absolute value
Add, signed, nonsaturating {unsigned}
Add {byte, half, word} nonsaturating
Add with 16-bit constant
Add two 16-bit halves
Add, saturating
Multiply lower halves {unsigned/signed}
Multiply upper halves {unsigned/signed}
Multiply upper, lower halves {un/signed}
Multiply lower, upper halves {un/signed}
Multiply, shift left, and saturate
Subtract, nonsaturating {unsigned}
Subtract address {byte, half, word}
Subtract, saturating
Conditional divide step
Subtract two 16-bit halves
Clear destination
Clear bit field
Set bit field
Extract {unsigned} bit field
Negate
Normalize; find first nonredundant bit
Leftmost bit detection
Saturate 40 bits to 32 bits

Mnemonic Description
Arithmetic

Jump/Branch

Mnemonic Description Ex Unit
Logical

Ex Unit

Load/Store

Comparison

Miscellaneous

SM DL SM DL

Table 1. TI’s eight-way ’C6x provides the usual complement of fixed-point DSP instructions, which it executes with a pair of four nearly identical
execution units. About half of the instructions must be dispatched to a particular type of execution unit (L, M, S, or D), while some instructions, such
as ADD and MV, can be handled by two or more different types of units, easing superscalar dispatch. *LD and ST with 15-bit offsets can execute
only in the D2 unit. †MVC, BIRP, BNRP, and STP can execute only in the S2 unit.

4

© M I C R O D E S I G N R E S O U R C E S F E B R U A R Y 1 7 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

Dependencies Can Be Tricky to Identify
The architecture of the ’C6x is reminiscent of Intel’s i860 in that it

lays the pipeline open for the programmer to exploit. Crafting care-

fully arranged object code is crucial to extracting performance from

the ’C6x. It will not be an easy task.

As mentioned previously, the chip does no dependency

checking, and multiple writes to the same destination register give

undefined results. Avoiding this condition can be harder than it

sounds, because not all instructions have the same latency. Issuing

an ADD one cycle after an MPY with the same destination will cause

a failure because of their different latencies. In the MAC example,

on the other hand, an ADD must be scheduled at least one cycle after

the MPY for the result to propagate correctly.

Packing two mutually exclusive conditional instructions in

the same execute packet is not a programming error and, in fact,

can be a good idea. Programmers can create their own conditional

moves, adds, or other functions simply by including in the same

packet duplicate instructions that are based on opposite states of

the same condition. Again, there is an opportunity for mischief

here, as the ’C6x software tools cannot check for conflicting

instructions that are made conditional on the contents of unre-

lated registers.

Manually scheduling eight execution units could be a

Sisyphian task for any but the most gifted DSP codesmith. TI rightly

recognizes that software-development tools are going to be key to

the acceptance of the ’C6x family. The company created a special-

ized C compiler and an optimizing assembler. Both will be available

when the first chip ships in 3Q97.

DSP programmers have historically shunned C compilers,

preferring to write in assembly language. C, they say, was never

designed for signal processing. Given the ’C6x’s architecture,

though, those times may be coming to an end. The chip is too com-

plex for assembly-level coding. ’C6x programmers are about to go

through the same convulsion as RISC programmers of a decade ago,

finally moving from assembly to C.

Performance Estimates Look Impressive
The final question is whether the performance of the ’C6x is as

daunting as its programming model. Although no concrete num-

bers are available, Berkeley Design Technology has run some bench-

marks on a cycle-accurate simulator of the ’C6x.

The simplistic claim of 1,600 MIPS at 200 MHz would suggest

the ’C6x is 15–40 times faster than currently available fixed-point

DSPs. In reality, because the ’C6x treats every movement of data as

a discrete operation, the net performance is not as great, but still

impressive. A simulated ’C6x finished the BDT radix-2, 256-point

FFT benchmark in 21 microseconds, which is about five times faster

than Motorola’s 563xx-100, eight times faster than Lucent’s

DSP16xx-120, and 12.5 times faster than TI’s own ’C54x-50.

Code density, not surprisingly, was not even close. On the

same FFT code, the ’C6x binary was about 5–6 times larger than

that of either the 563xx or the ’C54x. A 256-bit instruction word

definitely takes its toll in code density.

TI has priced the ’C6201 at $135 in 1,000-piece quantities.

While that price certainly makes the part one of the most expensive

fixed-point DSPs around, its impressive performance makes it a

good overall value for those applications that can make use of its

capabilities.

Finding those applications will be TI’s challenge. Few kinds of

systems are big enough to need a DSP of this magnitude. TI expects

to replace collections of ganged DSPs, such as those used in simula-

tors, central-office switches, modem banks, and cellular base sta-

tions. This last market may be TI’s best bet. Digital PCS (personal

communications service) is just taking off, and its dependence on

smaller “microcells” should spur demand for compact but powerful

DSPs. Replacing racks of discrete DSPs with a few ’C6x processors

could make such equipment smaller, cooler, and more reliable.

Crucial to the acceptance of the ’C6x will be the software

tools. TI needs to deliver excellent tools and tolerate some delays

while DSP programmers overcome the emotional hurdle of writ-

ing high-performance DSP code in C. If the company can execute

well here, the ’C6x should perform well in some new high-end

applications.

Harri Hakkarainen is an author of Berkeley Design Technol-

ogy’s Buyer’s Guide to DSP Processors, the 1997 edition of which will

be available from MicroDesign Resources in April.

M

loop:
 ADD.L1 A0,A3,A0 ;A0=A0+A3
|| ADD.L2 B1,B7,B1 ;B1=B1+B7
|| MPYHL.M1X A2,B2,A3 ;A3=A2(hi)×B2(lo)
|| MPYLH.M2X A2,B2,B7 ;B7=A2(lo)×B2(hi)
|| LDW.D2 *B4++,B2 ;load into B2
|| LDW.D1 *A7--,A2 ;load into A2
|| ADD.S2 -1,B0,B0 ;decrement counter
|| [B0] B.S1 loop ;branch if B0 nonzero

Figure 4. In this example of an FIR filter, eight instructions fit in a sin-
gle fetch packet, executing in parallel and calculating two taps per
iteration.

PG

PS

PW

PR

DP

DC

E1

E2

E3

E4

E5

Lo
ad

s
Br

an
ch

es
M

ul
tip

lie
s

Generate program address

Program address send

Program memory access

Instruction dispatch

Instruction decode

Execute 1

Execute 2

Execute 3

Execute 4

Execute 5

Fetch reaches CPU boundary

Figure 3. The ’C6x has an 11-stage pipeline, but most instructions
complete after seven cycles. A 16×16 multiply operation requires one
extra cycle; loads require four extra cycles to transfer data.

To subscribe to Microprocessor Report, contact MDR’s customer

service department by phone, 707.824.4001; fax, 707.823.0504; or

e-mail, cs@mdr.zd.com; or visit the Web at www.chipanalyst.com.

Microprocessor Report is published every three weeks, 17 issues

per year. Back issues are available on paper and CD-ROM.

