DSP on General-Purpose Processors — An Overview or Can General-Purpose Processors Replace DSPs?

MicroDesign Resources DInner Meeting
Santa Clara, California
January 9, 1997

Jeff Bier
Berkeley Design Technology, Inc.
Berkeley, California
E-mail: bier@bdti.com
Web: www.bdti.com
Tel: (510) 665-1600

Copyright © 1997 Berkeley Design Technology, Inc. All rights reserved.
Why is this Important?

DSP applications are proliferating dramatically:

- Wired and wireless comms., music, speech, video, motor control, noise cancellation, navigation, ...
- Many products are becoming DSP-intensive

The DSP chip market is booming:

- $2.3B (programmable) and $3.6B (non-programmable) in 1996
- Growth rate > 30% per year [Source: Forward Concepts]

Many products contain DSPs and general-purpose processors (GPPs).

- With increasing integration, one will tend to subsume the other
Outline of Today’s Presentation

Focus: DSP capabilities of general-purpose processors

• Applications and system architectures
• Processor architectural approaches
• Evaluation criteria
• Evaluating GPPs for DSP applications
• Conclusions and Trends

Not included:

• “Media” processors
• Non-programmable devices
Short Answer for the Impatient

Can general-purpose processors replace DSPs today?

Yes:

• Especially in personal computers

• Especially for certain applications; e.g., telephony, videoconferencing

But, you may not want to, because:

• DSPs have an unbeatable combination of integration, cost-performance, low power, and infrastructure for many applications

• Ensuring strict real-time behavior on GPPs can be problematic

• DSP software development on GPPs can be difficult

Requires application-by-application analysis
Applications and System Architectures
What’s Special About DSP Applications?

Demands:

• Lots of number crunching
• High data bandwidth; limited data locality
• Real-time constraints
• Attention to subtle numeric effects (in fixed-point implementations)
• Specialized peripherals/interfaces
Applications

For this analysis, we divide DSP applications into two categories:

• Personal-computer-based
 • E.g., modems, speech compression/recognition/synthesis, music/sound synthesis, video compression

• Embedded
 • E.g., disk drive servo control, cellular phones, pagers, motor control, navigation, modem banks, answering machines

Both classes are candidates for implementation on general-purpose processors.

PC-based applications are receiving more attention now, but embedded applications are and will be far more numerous.
System Architectures

Many existing or emerging products:

- Already contain a μP or μC
- Already contain a μP or μC plus a DSP
- Require μP/μC and DSP functionality

Merging all programmable functionality into a single processor can be attractive:

- High integration can reduce size, cost, power consumption
- Leverages existing software, tools, know-how
- Few modifications to existing system hardware
Overview of GPP Architectural Approaches to DSP
GPP Architectural Approaches to DSP

General-purpose processor vendors have taken a variety of approaches to addressing DSP performance:

• Baseline GPPs (moderate performance, no DSP features)
• High-performance GPPs with few/no DSP-oriented features
• GPPs with major DSP-oriented features
 • SIMD
 • DSP-processor-like
• DSP co-processors
I: Baseline GPP Architectures

Example: Advanced RISC Machines’ ARM7TDMI

Typical moderate-performance GPPs with no DSP features perform poorly on DSP tasks.

The main reasons for this are:

- Poor multiplication throughput
- Limited memory bandwidth
- Loop overhead
- Address generation overhead

Also, on fixed-point processors:

- Lack of hardware support for fast overflow protection, convergent rounding, etc.
II: High-Performance GPPs with No/Few DSP Features

Example: Pentium (P54C), PowerPC 604e, IDT R4650

These processors can perform very well on DSP tasks.

The main reasons for this are:

- High clock rates (200+ MHz; 2-5 X those of typical DSPs)
- Single-cycle multiplication and arithmetic operations
- Good memory bandwidth
- Loop overhead reduced via branch prediction and multi-issue
- Address generation, other overhead reduced via multi-issue

However, dynamic features complicate optimization of DSP code and real-time development.
III: GPPs with Major DSP Features (1 of 2)

Approach A: Single-instruction, multiple-data operations

Example: Intel MMX Pentium (P55C)

These processors achieve outstanding DSP performance by combining the features of “conventional” high-performance GPPs (group II) with new SIMD capabilities:

- Partition existing data path (or add a new, partitioned one)
- Multiple operations/cycle on small data types (e.g., 4 multiplies)
- Single-cycle operations on various fixed-point data types
- Specialized instructions

Integration of these features into a pre-existing architecture can be awkward.
III: GPPs with Major DSP Features (2 of 2)

Approach B: Integration of DSP-processor-like features

Example: Hitachi SH-DSP

These processors achieve good DSP performance by mimicking DSP processors.

To a conventional GPP architecture, they add:

• A DSP-oriented data path, complete with dedicated registers
• Address generators, hardware looping, modulo addressing, saturation, etc.

Integration of these features into a pre-existing architecture can be awkward.
IV: DSP Co-processors

Example: ARM Piccolo

These processors should achieve good performance on DSP tasks. None widely deployed yet.

Approach is similar to IV(B), but:

- Programming can be more complicated
- More parallelism may be possible

Contrast with DSP + GPP on one chip:

- Motorola MC68356
- Texas Instruments TMS320C54x + ARM7
Evaluating GPPs for DSP
What’s Most Important?

• DSP speed
• DSP numeric performance (can sometimes trade off vs. speed)
• Cost
• Cost/performance
• Power consumption
• Real-time suitability
• Product development time and cost
Speed: BDTI FFT Benchmark Execution Time (μs)

(Lower is Better)

- ARM7TDMI 40 MHz: 1098 μs
- SH-DSP 60 MHz: 211 μs
- P55C 200 MHz: 89 μs
- P55C-C 200 MHz: 86 μs
- IDT R4650 133 MHz: 217 μs
- TMS320C54x 66 MHz: 199 μs
- P54C 200 MHz: 159 μs
- P54C-C 200 MHz: 151 μs
- PPC 604e 200 MHz: 110 μs
- PPC 604e-C 200 MHz: 87 μs
- ADSP-21062 40 MHz: 159 μs
- ADSP-21062-C 40 MHz: 158 μs

- Measured
- Estimated

"-C" indicates on-chip caches preloaded
DSP Numeric Performance

DSP applications are often very sensitive to numeric effects. This is typically not a concern with floating-point processors.

On fixed-point processors, key issues include:

• Selection of appropriate word widths
• Overflow protection
• Convergent rounding
• Multi-precision/block floating-point/floating-point support

Lack of needed hardware support can be overcome with software, but the cost may be high.
Cost

Cost is surprisingly tricky to analyze.

• Processor cost alone is often not very relevant.

Need to compare the overall system costs resulting from processor choices.

• E.g., may need to compare the cost of a DSP processor plus its own memory vs. the cost of upgrading to an enhanced GPP.

• Memory usage plays an important role.

Pricing strategies are very different for PC-oriented GPPs vs. DSPs:

• PC-oriented GPPs command > 2X price/performance penalty for the fastest versions. DSPs have their best price/perf. at high end.
Example Cost

<table>
<thead>
<tr>
<th>Type</th>
<th>Vendor</th>
<th>Processor</th>
<th>Speed (MHz)</th>
<th>Unit Price (Qty. 1,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed-Point</td>
<td>Hitachi</td>
<td>SH-DSP</td>
<td>60</td>
<td>$45</td>
</tr>
<tr>
<td></td>
<td>IDT</td>
<td>R4650</td>
<td>133</td>
<td>$63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R4640</td>
<td>133</td>
<td>$34</td>
</tr>
<tr>
<td></td>
<td>Intel</td>
<td>MMX Pentium (projected)</td>
<td>200</td>
<td>$550</td>
</tr>
<tr>
<td></td>
<td>Texas Instr.</td>
<td>TMS320C548</td>
<td>66</td>
<td>$35</td>
</tr>
<tr>
<td>Floating-Point</td>
<td>Intel</td>
<td>Pentium</td>
<td>200</td>
<td>$509</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>$106</td>
</tr>
<tr>
<td></td>
<td>Motorola</td>
<td>PowerPC 604e</td>
<td>225</td>
<td>$620</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>$173</td>
</tr>
<tr>
<td></td>
<td>Analog Devices</td>
<td>ADSP-21062</td>
<td>40</td>
<td>$170</td>
</tr>
</tbody>
</table>
Cost-Execution Time Product, Block FIR Benchmark

($-\mu s$, Lower is Better)

<table>
<thead>
<tr>
<th>Processor</th>
<th>Fixed-Point</th>
<th>Floating-Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH-DSP 60 MHz</td>
<td>0.34</td>
<td>1.48</td>
</tr>
<tr>
<td>P55C-C 200 MHz</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>IDT R4650 133 MHz</td>
<td>0.74</td>
<td>1.77</td>
</tr>
<tr>
<td>TMS320C54x 50 MHz</td>
<td>0.18</td>
<td>1.00</td>
</tr>
<tr>
<td>P54C-C 100 MHz</td>
<td>1.48</td>
<td>1.25</td>
</tr>
<tr>
<td>PPC 604e-C 133 MHz</td>
<td>1.25</td>
<td>1.00</td>
</tr>
<tr>
<td>ADSP-21062-C 33 MHz</td>
<td>1.77</td>
<td>1.00</td>
</tr>
</tbody>
</table>

"-C" indicates on-chip caches preloaded

Measured

Estimated

Berkeley Design Technology, Inc.
Power Consumption

Power consumption is a key processor selection criteria in many important DSP applications.

- Today, only DSPs combine good DSP performance with very low power consumption and application-appropriate power management.

Example data:

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Processor</th>
<th>Speed (MHz)</th>
<th>Voltage (V)</th>
<th>Typical Power Consumption (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hitachi</td>
<td>SH-DSP</td>
<td>40</td>
<td>3.0</td>
<td>0.20 (est.)</td>
</tr>
<tr>
<td>IDT</td>
<td>R4650</td>
<td>133</td>
<td>3.3</td>
<td>2.1</td>
</tr>
<tr>
<td>Texas Instr.</td>
<td>TMS320C54x</td>
<td>50</td>
<td>3.0</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Real-Time Suitability

Q: Why is running DSP code on general-purpose processors like alien abduction?
Real-Time Suitability

A: Both result in inexplicable gaps in time.
Real-Time Suitability

The most important DSP applications are real-time applications.

- Many of these are “hard real-time” applications: failure to meet a real-time deadline creates a serious malfunction.

High-performance GPPs make heavy use of dynamic features:

- Caches, branch prediction, dynamic superscalar execution, data-dependent instruction execution times, etc.

These features result in timing behavior that appears to be stochastic.

- This seriously complicates development of DSP applications.

PC applications are further complicated by the lack of real-time support in PC operating systems.
Product Development Time and Cost

Among the most important factors affecting development effort:

- Breadth and quality of tools and documentation
- Processor ease of use
- Availability of off-the-shelf software libraries

Developing DSP code for general-purpose processors requires using assembly language when efficiency is important.

- High-performance GPPs are very difficult to program for DSP
- The most popular GPPs enjoy unparalleled tool support, but DSP-oriented tools are rare
- DSP software libraries for GPPs are few and far between
Example of Optimization Challenge

Vector addition on PowerPC 604e:

@vec_add_loop:

lfsu fpTemp1,4(rAAddr) # Load A data, ptr. update
lfsu fpTemp2,4(rBAddr) # Load B data, ptr. update
fadds fpSum,fpTemp1,fpTemp2 # Perform add operation
stfsu fpSum,4(rCAddr) # Store sum, ptr. update
bdnz @vec_add_loop # loop

Q: How many instruction cycles per iteration?
Conclusions and Trends
Conclusions: Can GPPs Replace DSPs?

Today:

Yes:

• In some PC DSP applications, the case is strong. Real-time behavior, OS support, and tools are weaknesses.

• In some embedded applications, especially where a µP or µC is already established, DSP algorithms are straightforward, and DSP performance needs are modest.

And, no:

• In many PC DSP applications, users needing the best quality and highest performance will benefit from DSPs and other specialized processors.

• In the most important embedded DSP applications, today’s GPPs cannot compete: they have not pulled together all of the necessary attributes and infrastructure.
Trends

• DSP applications will continue to become increasingly important

• GPPs will continue to add and expand DSP-oriented enhancements

• DSP-oriented tools, software, and other infrastructure for GPPs will develop, but DSPs have a significant head-start

• DSPs will not stand still; there is fertile ground for architectural innovation, clock speed increases, etc.

• There will be an expanding diversity of processors; DSP and GPP family trees will mix

• Capabilities will become increasingly specialized for the wide range of important DSP applications

• GPPs will be suitable for an expanding range of DSP applications
Further Resources

• BDTI technical reports:
 • *DSP on General-Purpose Processors* (just released)
 • *Buyer’s Guide to DSP Processors*

• *Microprocessor Report* articles (especially 12/30/96, pp. 12-15)

• BDTI’s web site: *www.bdti.com*

• Forward Concepts market research reports: *DSP Strategies 2000*

• DSP-oriented trade shows and conferences: ICSPAT, DSP World, etc.

• Join BDTI ... we’re hiring