Current Directions for DSP Processors

February 23, 1998

Berkeley Design Technology, Inc.
2107 Dwight Way, Second Floor
Berkeley, CA 94704
+1 (510) 665-1600
http://www.bdti.com

© 1998 Berkeley Design Technology, Inc.
Some Hot Topics

- What's happening in architectures for DSP?
- Measuring DSP performance
- Integration
- Tools
- Conclusions
New Architectures for DSP

- Enhanced conventional DSPs:
 - Lucent DSP16000, Motorola DSP56300

- VLIW:
 - TI TMS320C6200, Philips TM1000

- General-purpose processors:
 - 80x86 with MMX, PowerPC 604e
 - ARM, SH-DSP, TriCore
Baseline: "Conventional DSPs"

- Common attributes:
 - 16- to 24-bit fixed-point (fractional) arithmetic
 - 16-, 24-, 32-bit instructions
 - One instruction per cycle ("single issue")
 - Complex, "compound" instructions encoding many operations
 - Highly constrained, non-orthogonal architectures
Baseline: "Conventional DSPs"

- Common attributes (cont.):
 - Dedicated addressing hardware w/ specialized addressing modes
 - Multiple-access on-chip memory architecture
 - Dedicated hardware for loops and other execution control
 - Specialized on-chip peripherals and I/O interfaces
 - Low cost, low power, low memory usage
Enhanced Conventional DSPs

- More parallelism
 - e.g., 2nd multiplier, adder
 - limited SIMD operations
- Highly specialized hardware in core
 - e.g., application-oriented data path operations
- Co-processors
 - Viterbi decoding, FIR filtering, etc.

Examples: Lucent DSP16000, Motorola DSP56300
Enhanced Conventional DSPs

- **Advantages:**
 - Allows incremental performance increases while maintaining competitive cost, power, code density
 - Compatibility is possible; similarity is likely

- **Disadvantages:**
 - Increasingly complex, hard-to-program architectures
 - Poor compiler targets
 - How much farther can we get with this approach?
DSP16000
Data Path
Current VLIW architectures in DSP applications:

- TI TMS320C6xxx, Philips TM1000

Characteristics:

- Multiple independent operations per cycle, packed into single large "instruction" or "packet"
- More regular, orthogonal, RISC-like operations
- Large, uniform register sets
Example VLIW Data Path (‘C6x)

On-Chip Program Memory

2 Independent Data Paths

Dispatch Unit

Register File A

L1 S1 M1 D1

Register File B

L2 S2 M2 D2

On-Chip Data Memory

32x8=256 bits
VLIW Architectures

Advantages:

- Increased performance
- More regular architectures
 (potentially easier to program, better compiler targets)
- Scalable (?)
VLIW Architectures

Disadvantages:

- New kinds of programmer/compiler complexity
- Code size bloat
 (High program memory bandwidth requirements)
- High power consumption
The GPP Threat

High-performance general-purpose processors for PCs and workstations are increasingly suitable for DSP tasks. Examples:

- MMX Pentium
- PowerPC 604e

Why?
General-Purpose Processors

- Very high clock rates (200-500 MHz)
- Superscalar (multi-issue)
- Single-cycle multiplication, arithmetic ops
- Good memory bandwidth
- Branch prediction
- In some cases, SIMD operations
High Performance GPPs for DSP

- Advantages:
 - Strong DSP Performance
 - Already present in PCs
 - Strong tools support for the major processors
 - Cost-performance can rival floating-point DSPs
High Performance GPPs for DSP

Disadvantages:
- Lack of execution-time predictability (may cause problems in real-time applications)
- Difficulty in developing optimized DSP code
- Limited DSP-oriented tools support
- High power consumption
- Cost-performance doesn’t approach that of fixed-point DSPs
Vector addition on PowerPC 604e:

@vec_add_loop:
 lfsu fpTemp1, 4(rAAddr) # Load A data
 lfsu fpTemp2, 4(rBAddr) # Load B data
 fadds fpSum, fpTemp1, fpTemp2 # Perform add
 stfsu fpSum, 4(rCAddr) # Store sum
 bdnz @vec_add_loop # loop

Q: How many instruction cycles per iteration?
Embedded GPPs

GPPs for embedded applications are beginning to address DSP needs:
- Hitachi SH-DSP, ARM Piccolo, Siemens TriCore

Various approaches:
- Integrate fixed-point DSP data path & related resources with an existing uC core (SH-DSP)
- Add a DSP co-processor to existing uC core (Piccolo)
- Create an all-new hybrid architecture (TriCore)
Embedded GPPs for DSP

◆ Advantages:
 ● Respectable DSP performance
 ● Cost-performance can rival that of fixed-point DSPs
 ● Already present in many embedded applications--upgrade path
 ● Many potential benefits of using one processor vs two: size, cost, etc.
Disadvantages:

- Compromise architectures betray their compromises:
 - Programming complexity
 - Performance penalties

- Starting with limited DSP infrastructure
Measuring DSP Performance

The problem:

- Need accurate, quick comparisons of processors' DSP performance (speed, energy consumption, etc)
- Increasing diversity of architectures
- Simple metrics (MIPS, MOPS) are useless
- High performance requires hand-coded assembly
- Complete applications are impractical as benchmarks
Measuring DSP Performance

A solution:

An approach based on algorithm kernel benchmarks that are:

- Derived from important DSP applications
- Implemented in a consistent fashion
- Carefully optimized for each processor
- Verified by an independent third party

is practical and yields meaningful results.
Example Results: Speed

<table>
<thead>
<tr>
<th>Processor</th>
<th>BDTImarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP1620 120 MIPS</td>
<td>22</td>
</tr>
<tr>
<td>TMS320VC549 100 MIPS</td>
<td>25</td>
</tr>
<tr>
<td>DSP16210 100 MIPS</td>
<td>36</td>
</tr>
<tr>
<td>MMX Pentium 233 MHz</td>
<td>49</td>
</tr>
<tr>
<td>TMS320C6201 1200 MIPS</td>
<td>77</td>
</tr>
</tbody>
</table>

BDTImarks (fixed-point processors)
Example Results: Energy Efficiency

<table>
<thead>
<tr>
<th>Processor</th>
<th>MIPS</th>
<th>BDTImarks/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP1620</td>
<td>120</td>
<td>74</td>
</tr>
<tr>
<td>TMS320VC549</td>
<td>100</td>
<td>222</td>
</tr>
<tr>
<td>DSP16210</td>
<td>100</td>
<td>122</td>
</tr>
<tr>
<td>MMX Pentium</td>
<td>233</td>
<td>12</td>
</tr>
<tr>
<td>TMS320C6201</td>
<td>1200</td>
<td>21</td>
</tr>
</tbody>
</table>

BDTImarks/W
(fixed-point processors)
Example Results: Speed

<table>
<thead>
<tr>
<th>Processor</th>
<th>MIPS</th>
<th>MHz</th>
<th>BDTImarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMS320C44</td>
<td>30</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>PowerPC 604e</td>
<td></td>
<td>350</td>
<td>66</td>
</tr>
<tr>
<td>Pentium</td>
<td></td>
<td>233</td>
<td>26</td>
</tr>
<tr>
<td>ADSP-21061</td>
<td>50</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

BDTImarks (floating-point processors)
Example Results: Cost-Performance

<table>
<thead>
<tr>
<th>Processor</th>
<th>BDTImarks/¢</th>
<th>MIPS</th>
<th>MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMS320C44</td>
<td>6</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>PowerPC 604e</td>
<td>12</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>Pentium</td>
<td>18</td>
<td>233</td>
<td>233</td>
</tr>
<tr>
<td>ADSP-21061</td>
<td>16</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>
Integration

DSP processors have become building blocks for chips, rather than boards:

- **DSP Core**
- **DAC**
- **Custom Analog**
- **ADC**
- **Microcontroller Core**
- **RAM**
- **ROM**
- **Custom Digital**
- **Serial Port**
High-volume DSP users want highly specialized chips for their embedded apps. Some options:

- Specialized, highly integrated off-the-shelf processor variants
- Application-specific processors and ASSPs from processor vendors and third parties
- Foundry-captive cores
- Licensable cores
Tools

Shifts in tools for DSP-based development:

- **On-chip debug**
 - JTAG-compatible debug ports almost universal
 - Increasing sophistication of debugging resources
 - Emerging support for real-time debugging

- **C Compilers**
 - Compilers are becoming more credible
 - but maximum performance still requires assembly
Instruction-set simulators:
- Robust cycle-accurate instruction-set simulators are needed early to facilitate software development for new processors
- Performance, accuracy are challenges

Third-party vendors:
- Several major tool vendors with DSP C compiler expertise have withdrawn (Intermetrics, Tartan)
- A new wave is emerging, with focus on integrated environments (Wind River, Allant)
Conclusions

- **Architectures**
 - Increased diversification, specialization in architecture, integration, and market strategies
 - GPPs will increasingly tackle DSP tasks
 - DSP and GPP family trees will mingle

- **Performance measurement**
 - Getting harder, not easier
 - Application specific
 - Independent results are increasingly important
Conclusions

◆ Integration
 ● Cores and the ability to quickly generate custom processor-based devices will be most important
 ● Tools and other infrastructure are critical for this

◆ Tools
 ● May become more important than architectures
 ● An area of challenge and opportunity
 ● Ease of development of efficient code is key
For More Information...

- These slides will be available at BDTI's web site:
 http://www.bdti.com

- DSP Processor Fundamentals (BDTI, 1996), a textbook on DSP processors

- The BDTI mark: A Measure of DSP Execution Speed (BDTI, 1997), a white paper describing the methodology used to develop the BDTI mark
Join BDTI--We're Hiring!

BDTI is currently recruiting for the following positions:

- DSP Software Engineers
- DSP Engineers/Analysts

Both full-time and part-time positions are available.

Why work for BDTI?

- Cool new technology: You will get to work with the hottest new processors and tools, often before they are publicly announced.
- Diverse assignments: You will have the opportunity to use DSP technology for a wide range of applications, from audio to communications to
- High-caliber colleagues: We have a reputation for employing some of the sharpest engineers in the DSP industry.

© 1998 Berkeley Design Technology, Inc.