Optimizing DSP Software

for the Latest Processors

Berkeley Design Technology, Inc.
2107 Dwight Way, Second Floor
Berkeley, California U.S.A.

+1 (510) 665-1600
info@bdti.com
http: /fwww.bdti.com QDTI

Copyright @ 19498 Berkeley Design Technology, Inc.

Optimization

Definition.: A procedure used in the design of a system
fo maximize {or mirnimize) some performance index.

Possible performance indices:
e Execution speed
e Memory usage (code size and data size)
e Power consumption

¢ DSP applications require optimized software to be
competitive

¢ Compilers typically don't generate sufficiently optimized
software; the programmer often must hand-optimize

inner loops in assembly language 9DT
i

i 19498 Berkeley Design Technology, Inc.

Characteristics of Modern

Processors

Modern processors use increased parallelism to get high
performance on DSP tasks
Several different paths to achieve this goal:

e Allowing many parallel operations to be encoded
in each instruction

e Issuing multiple instructions per cycle--superscalar,
VLIW (very long instruction word) architectures

e Adding SIMD (single instruction, multiple data)
capabilities

¢ Given the current architectural landscape, what
optimization techniques are effective?

BDT;

i 19498 Berkeley Design Technology, Inc.

Optimization Considerations

¢ Optimizations often involve trade-offs between speed,
memory usage, and power consumption

The best optimization technique depends on the
processor and the application

¢ Fortunately, there are some general techniques that
apply to nearly any processor

A key observation is that DSP applications spend

most of their time in loops -- this is where optimization
for speed and power is most valuable

BDT;

4 @ 1992 Berkeley Design Technology, Inc.

A Recipe for Loop Optimization

1. Identify the best approach to implementing
the algorithm:

¢ Profile the loop to identify bottlenecks.
For example, are bottlenecks caused by

e a particular execution unit?
e accesses to memory?

4 Re-structure the algorithm to alleviate these
bottlenecks (“algorithmic transformation™)

2. Implement this approach efficiently
using scheduling techniques QDT
|

a] @ 1992 Berkeley Design Technology, Inc.

Profiling an FIR Filter on a DSP

—»

— D "ee Ty

D
h, "’é hn—f’é)

I

X
|

oo —r@ —»@—r

J,
—(X)e—
=
v

l

Requirements: Resources:

* multiply * multiplier

* add * ALU

* 2 loads » 2 AGUs, 2 buses

* 1 store gDTI

i 19498 Berkeley Design Technology, Inc.

Three Categories of Algorithmic

Transformations, With Examples

n Unrolling across outer loops

Identifying operations that can be moved
outside of a loop

Rearranging data in memory

Examples we present here are not exhaustive, just
illustrative of the concepts of each type of algorithmic
transformation

BDT;

i 19498 Berkeley Design Technology, Inc.

1. Unrolling Across Outer Loops

Useful in algorithms that use nested loops

4 The goal: combine work from consecutive iterations
of outer loop in inner loop

¢ Allows better re-use of intermediate results

i 19498 Berkeley Design Technology, Inc.

Radix-2 vs Radix-4

FFT Butterfly Structures

Stage 1 Stage 2

x(0) = AN ? X (0)
x(2) X(1)
x(1) X(2)
x(3) X(3)
stage 1
x(0) X
x(2) X(1)
x(1) X(2)
x(3) X(3)

i 19498 Berkeley Design Technology, Inc.

Radix-2:

Each butterfly requires:
8 Memory accesses
4 Multiplications
6 Additions

Radix-4:

Each butterfly requires:
16 Memory accesses (4 /R-2 bily)
12 Multiplications (3 / R-2 bily)

i

22 Additions (5.5 /R-2b

Block FIR Filter using "Zipping"”

Dot Product |—» one output

Dot Product |—® one output

10

LD
LD
k2
LD
R2
LD
R2
LD
R2

R0, Xq

El. Cp

= RO*R1. LD RO.X g,
El.C4

= R2+R0=R1. LD RO. X o
El, Ca

= R2+R0=R1, LD RO.Xi a3
El.C3

= RZ+RE0=E1

vl 1= in REZ

Two dot products,

but using previously

—
two outputs

feiched data

]
LD R0.¥] =
LD R1.Cp
R2 = RO=E1,. LD EROD.Xp
R3 = ROxE1l, LD E1.C4
E2 = RZ2+R0=R1., LD ED,KP{}
F3 = R3+R0=RE1. LD El,CE
E2 = RZ+R0=RKE1., LD ED,KPQ}
E3 = R3+R0=*KE1. LD ER1.Cq
R2 = R2+R0=R1. LD RO, X 3
Fai = R3i+E0=E1

vl 1= 1in EZ
w0 1= in E3

i 19498 Berkeley Design Technology, Inc.

LMS Adaptive FIR Filter

Perform Dot Product

\

Calculate Exrror

¥

Update Coefficients

11

i 19498 Berkeley Design Technology, Inc.

re-order,
combine
operations

Update Coeflicients

v

Perform dot product
without reloading
coeffs from memory

\

Calculate Exror
(for next invocation)

BDT;

2. Moving Operations Outside Loop

® Goal: Use a priori knowledge of the algorithm to
avoid repeated operations

Identify calculations that produce constant results
over the duration of the loop

¢ Move those calculations outside the loop

12 @ 1992 Berkeley Design Technology, Inc.

Circular Buffering for FIR Filter

4 Implementing a circular buffer without support for
modulo addressing. How to avoid checking for
wraparound at each iteration?

‘h[:,------hk_1 h....... h, Loop 1 processes k samples

’>§>< Loop 2 processes n-k samples

Il‘ilﬂtiPllF'ﬂ““}“mﬂﬂtﬂf Find wraparound point outside of

< < x < loop since it is constant over the
L Sl | k-1l duration of the loop

Pointer to Location of Last Sample ‘R DTI

13 @ 1992 Berkeley Design Technology, Inc.

Convolutional Encoder

G, PR MMM shit G, N
G
¢, (- EMEE i N

shift, don’t combine results:

shift, combine results: G'ﬂ mﬂmnmnn
3 | by |2 |by 2, by |2 by M0 (b, 0 |b,[0 |by|0 b
e 3 | M3 G b,

14 @ 1992 Berkeley Design Technology, Inc.

Radix-2 FFT

1st Stage
Twiddle factors for
1st stage are 1 and O; S5 ERTTR
can eliminate
Stage loop muiltiplications in
_ 1st stage.

Subsequent Stages

Stage loop

15 @ 1992 Berkeley Design Technology, Inc.

3. Arranging Data in Memory

¢ Goals:

e Simplify addressing to save cycles on address
calculations

e Enable use of SIMD or other parallel operations
¢ Reduce number of repeated loads

16 @ 1992 Berkeley Design Technology, Inc.

Circular Buffering for FIR Filter

4 How to avoid checking for wraparound at every iteration of
the inner loop?

4 Maintain two copies of filter coefficients in memory

Filter
h[:J hl-:' h, h[:J hl-;-l h, Coefficients

Multiply-accumulates
| | |

Xpgoo X Xouennn x, | Input

Pointer to Location of Last Sample

17 @ 1992 Berkeley Design Technology, Inc.

IIR Filter Bigquad Section

C |GG e | MMO

Store two copies of
filter state variables

' So | 51|50 [S MM1

18 @ 1992 Berkeley Design Technology, Inc.

Radix-2 FFT

Arrange twiddle factors

in bit-reversed order

W [0] W [0]

W [1] W [128]

W [2] W [64]

W [3] W[192]

W [4] W [32]
T

149 @ 1992 Berkeley Design Technology, Inc.

Scheduling Techniques

Now that you've found the best general approach for the
algorithm, you need to create an efficient implementation.

The programmer or compiler needs to schedule operations
so that the program can take full advantage of the
processor's parallelism. How?

® Software pipelining

4 Loop unrolling

200 @ 1992 Berkeley Design Technology, Inc.

Software Pipelining

What is software pipelining?

Execution of operations from different iterations of
the (nhon-software-pipelined) loop in parallel

¢ In each loop iteration, use intermediate results
generated by the previous iteration and perform
operations whose intermediate results will be used
in the next iteration

® The deeper the hardware pipeline, the more likely it
is that software pipelining will be necessary

BDT;

21 @ 1992 Berkeley Design Technology, Inc.

FIR Filter on 'C62xXx

LOOP:
LDW .D2 *B4++,B2

|| LOW .D1 *a7--,A2
HOP 4
MPYHL .M1X A2,B2,3%

|| MPYLH .M2X AZ,B2,B7
HOP 1
ADD .L1 10,A3,R0

|| apD .L2 B1,B7,B1

|| apD .82 -1,B0,BO

|| [RO] B .81 LoOP
HOP b5

! Loop ends here

22 @ 1992 Berkeley Design Technology, Inc.

n
F

r

No SW Pipelining:
6.5 Cycles/Tap
11 instructions

load coef{0) & coesl{1]}
load state{0) & state{l)

r PO{i1)=coef{2i)*state{2i)
; P1{i) =coef{2i+l)*state{Z2i+l1)}

: Sum0{i} += PO{i-2)}

; Suml{i)} += P1{i-2}

! Dec loop counter

;} Cond. Branch to LOOP

ST e P e @l With SW Pipelining:

0.5 Cycles/Tap
36 instructions

[Hot shown: 24 instructions to
prime pipeline, set up registers before loop start]

LOOP:

ADD .L1 A0,A3,A0
| |apD .L2 B1,B7,B1
| |PYHL .M1X AZ,B2,A3
| |MPYLH .M2X A2Z,B2,B7

Sum0{i} += PO{1i-2)

Suml{i} += P1{i-2)

PO{i) = coef{2i)*state{21)

P1{i)} = coef{(2i+l1)*state(2i+1)

| |]LDW .D2 *B4++, B2 load coef(2i+10) & coef{2i+11)

| |lLDW .D1 *An7--,A2 load state{2i+10) & state{2i+11)
|| [BO] ADD .82 -1,B0,B0 ; Cond. dec loop counter

|| [BO] B .81 LOOP Cond. Branch to LOOP

;! LOOP ends here

LT -a - "um "um

"mm

"=m

[Hot shown: 3 instructions for final calculations]

BDT;

23 @ 1992 Berkeley Design Technology, Inc.

FFT Butterfly on DSP16000

Software Pipelined

Loop
j=4
do cloop {
‘ad=a0+p0-pl; *r0++j=ad_5h

_...a2=an—pn+pl§/j pO=xh*yl pl=xl*yh. *ril++j=a2_3h

aS=al+p0+pl: y=*rl--
a3=a1—pﬂ—pl§ ipﬂ=xh*yh pl=xl*yl al0_lh=*r0--
}

24

i 19498 Berkeley Design Technology, Inc.

Loop Unrolling

25

Repetition of loop-body instructions several times
within a single loop iteration

¢ Main advantages:
¢ Reduces relative loop overhead

e May facilitate software pipelining by enabling
operations from different loop iterations to execute
in parallel

% Main disadvantages:
e Increased memory usage
e Loss of generality

i 19498 Berkeley Design Technology, Inc.

FIR Filter on MMX Pentium

No Unrolling,
no SW pipelining

loopl: 1.75 Cycles/Tap
movq mmO, [esil] ; load four samples
pmaddusd mm0, COEFaddr [edi] ;4 multiplies, 2 adds

/* two cycle stall happens here */

paddd mm7?, mmO ; accumulate intermed results
add edi, 8 ; update coefficient index
add esi, 8 ; update delay line pointer
dec ecx ; decrement loop count

jnz loopl

26 @ 1992 Berkeley Design Technology, Inc.

27

FIR on MMX Pentium

With Unrolling &
SW Pipelining:
0.625 Cycles/Tap

loopl:
pmaddewd mmd, COEFaddrledil] 4 multiplies, 2 adds
paddd mmT, mm2 ; accumulate intermediate results
pmadded mml, COEFaddrledi+8] : 4 multiplies, 2Z adds
paddd mmT, mm3 ; accumulate intermediate results
WOV mmzZ, [esi+l6] 2 load four mew samples
WOV mml, [esi+Zd] 2 load four mew samples
paddd mmT, mm0 5 accumulate intermediate results
pmaddwd sm2, COEFaddrledi+16] : 4 multiplies, 2 adds
paddd mmT, mml : accumulate intermediate result
pmaddwd sm3, COEFaddrledi+Z24] : 4 multiplies, 2 adds
WOV mml, [esi+3Z] : load four mew samples
mOwvg mml, [esi+40] s load four new samples
add edi, 32 s update coefficient index
add esi, 32 s update delay line pointer
dec e o s decrement loop count
joz loopl

i 19498 Berkeley Design Technology, Inc.

® As architectures diversify and become more
complicated, optimization gets harder

¢ Since compilers often do not generate sufficiently
optimized code, it is incumbent upon programmers to
optimize critical code by hand, usually in assembly

Optimization requires strong knowledge of both the
processor and the algorithm

¢ Be aware of trade-offs between speed, memory
usage, and power consumpton

BDT;

28 @ 1992 Berkeley Design Technology, Inc.

24

For More Information...

These slides will be available at BDTI's web site:
htip:/ /www.bdti.com

& DSF Processor Fundamentals (BDTI, 1996), a
texthook on DSP processors

i 19498 Berkeley Design Technology, Inc.

	img001
	img002
	img003
	img004
	img005
	img006
	img007
	img008
	img009
	img010
	img011
	img012
	img013
	img014
	img015
	img016
	img017
	img018
	img019
	img020
	img021
	img022
	img023
	img024
	img025
	img026
	img027
	img028
	img029

