Workshop W212: Implementing Streaming Media for Home Broadband Applications

Jeff Bier Berkeley Design Technology, Inc. (BDTI)

bier@BDTI.com www.BDTI.com © 2002 BDTI

OUTLINE

- Introduction
- Applications
- Formats and Standards for Streaming Audio and Video
- Hardware Considerations
- Software Considerations
- Additional Considerations
- Conclusions

Challenges of Implementing Streaming Media Products

- Evolving technologies
 - Chips, communications standards
 - Compression formats, rights management
- Competitive market
 - Many players, big and small
 - Overlap between similar applications
- Many complex design considerations
 - Quality and feature selection
 - Cost and time-to-market constraints

Characteristics of (Strict) Streaming Media

- Media carried in packets
- Packets may arrive out of order
- Packets may not arrive at all!
- Network or some intermediary not designed to carry data reliably in real-time
- Starts playing before the entire audio/video clip is downloaded

Game Consoles Game consoles: Stand-alone units Display via TV set Fast CPU Graphics co-processors Storage options

- Consoles & PCs require similar audio functions
- Consoles now support DVD playback
- Broadband communications ports will enable streaming media applications

Other Applications

- Internet applications
 - Audio apps becoming ubiquitous
 - Video apps gaining popularity
- Home audio/video
- Portable audio/video
- DAB Digital Audio Broadcast
- DBS Direct Broadcast Satellite
- Convergence devices
 - PDAs, cell phones, etc.
 - "Entertainment hubs"

Secret for Success #1:

Select appropriate algorithm(s)

Communications Design Conference © 2002 Berkeley Design Technology, Inc.

September 2002 Page 6

Selecting an Algorithm

- Compatibility with existing content
- Audio/video quality
- Bitrates supported
 - Match network/broadcast bandwidth?
- Resource requirements
 - CPU cycles, memory use
- Cost considerations
 - Licensing fees, royalties
 - Development effort
- May want to support multiple formats

Video Quality

- Display parameters
 - Frame resolution (pixels per frame)
 - Color resolution (# of possible colors)
 - Frame rate (frames per second)
- Visible compression artifacts
 - "Blocking" artifacts
 - Gibbs effect: blurring/shimmer around objects
 - "Ringing" artifacts
- Viewing tests are important

Audio Quality

- Speech quality
 - Is speech intelligible?
 - Can speaker be identified?
 - Is speech natural?
- Music / streaming media quality
 - "CD-quality": 16 bits, 44.1 kHz
 - Misused term
- Listening tests are important

Video Algorithms

- Moving Pictures Experts Group (MPEG)
 - MPEG-1, MPEG-2, MPEG-4
 - MPEG-2 is the most popular video compression technique today
 - Ongoing standardization effort (MPEG-7)
- RealNetworks RealVideo 9
- Microsoft Windows Media Video 8
- Sorenson Video 3
 - Also, Sorenson Spark (Macromedia Flash)
- On2 Technologies VP5

Ease of use Tricky Easy Dynamic range Same as precision Set by exponent: 1500 dB for single-precision IEEE		Fixed point	Floating point
Dynamic rangeSame as precisionSet by exponent: 1500 dB for single-precision IEEEPrecision16 bit: 1 part in 64 K 24 bit: 1 part in 16 MEqual to mantissa precision (24 bit for IEEE single precision)	Cost	Cheap	Expensive
Precision16 bit: 1 part in 64 K 24 bit: 1 part in 16 MEqual to mantissa precision (24 bit for IEEE single precision)	Ease of use	Tricky	Easy
24 bit: 1 part in 16 M precision (24 bit for IEEE single precision)	Dynamic range	Same as precision	dB for single-precision
	Precision	24 bit: 1 part in 16 M	precision (24 bit for IEEE

Performance Considerations

- Architectural features
 - DSP arithmetic operations
 - Data bandwidth, DSP addressing modes
 - Cache size
 - Bit-field manipulation
 - Control operation efficiency
 - I/O efficiency (e.g., interrupt handling)
- Numeric fidelity
 - Data type(s)
 - Saturation, rounding, scaling, block floating-point
- Power consumption

Resource Requirements

- Video requirements depend on:
 - Image size(s) supported by application
 - Desired frame rate
 - Encoding practices
- Real-time MPEG-2 video <u>de</u>code:
 - Example stream: DVD
 - 720x480 pixels, 30 fps
 - On a VLIW media processor:
 - ~80% of a 166 MHz TriMedia TM32 core
- Memory requirements vary from 100s of kbytes to several Mbytes

Resource Requirements

- Don't forget other functions:
 - Player application
 - Sample rate conversion, color space conversion
 - Tone controls
 - Rights management, I/O, ...

September 2002 Page 13

Communications Design Conference © 2002 Berkeley Design Technology, Inc.

September 2002 Page 15

Operating Systems

- Provide real-time scheduling, task switching, inter-task communication, file system, (maybe) network stack
- Off-shelf candidates
 - Wind River VxWorks (set-top boxes)
 - Palm PalmOS (PDAs)
 - Microsoft WinCE (PDAs)
 - Embedded Linux (set-top boxes)

Communications Design Conference © 2002 Berkeley Design Technology, Inc.

September 2002 Page 16

I/O Management Software

- Management of DAC, USB port, etc.
 - Interrupt service routines (ISRs)
 - DMA management
 - Buffering
- Network stack
 - IP, TCP, UDP, RTSP, RTP, ...
- Possible sources:
 - OS vendor
 - Processor vendor
 - Third parties

Player Software

- Responsible for
 - GUI
 - File management (if stored files available)
 - Play, stop, pause, fast-forward, rewind, ...
 - Error detection, correction
- Makes calls to decoder, encoder
- Maintains synchronization of audio and video
- Communicates with network

<section-header> Development Considerations Software Components, modules, applications Processor Architecture Complexity, data type(s) Compatibility Compatibility Soussi Pobustness, efficiency Debugger, IDE, development boards, OS Version control Support From vendor, third parties, consultants

Where to Start?

- Algorithm specifications
- Reference implementation
- Optimized implementation(s)
 - From algorithm vendor
 - From chip vendor
 - From third party developers
- Published papers
 - Often describe optimizations, pitfalls, etc.
- Independent software developers
 - May have valuable experience, expertise, and methodology

Some Pitfalls to Avoid

- Be wary of publicly available source code
 - May be outdated and/or lack features
 - Audio/video quality may be low
- Be wary of "reference" code
 - May be extremely inefficient
 - May be based on floating-point math
- Be wary of the published spec
 - May be outdated or incomplete
- Be sure to get all errata sheets and updates for spec (and for chip)

Software Optimization

- Divide and conquer
 - Profile of algorithm execution by function
 - Estimate optimization gain per function
 - Estimate optimization effort per function
- Optimization techniques
 - Algorithm transformation/modification
 - Processor-independent software optimization
 - Processor-specific optimization

Optimization Techniques Algorithm Transformations

- Re-arrange block diagram
 - E.g., down-mix in frequency domain
- Coupling channel
 - E.g., re-calculate vs. store in memory
- Truncate where you can
- Recast or factor iMDCT
- Recast Huffman coding
 - Binary search tree?
 - ROM lookup tables?

Optimization Techniques Processor-Independent Optimization

• Strength reduction

Avoid costly operations:

int i, k, x[N]; ... for (i=0; i<N; i++) x[i] /= k;

int i, k, x[N], oneoverk; ... oneoverk = (1<<12)/k; for (i=0; i<N; i++) x[i] = (x[i]*oneoverk)>>12;

Function in-liningRecycle otherwise idle buffers

44

Optimization Techniques Processor-Specific Optimization

• Code optimizations

- Loop unrolling
- Change memory map
- Use specialized instructions
 - 'C54xx instruction to count 1s, 0s
 - Tricks with bit counter

Hardware optimizations

- Customize instructions
- Accelerators and co-processors

ADDITIONAL CONSIDERATIONS

45

Conclusions

 Streaming media applications promise to revolutionize

communication and entertainment

- Key technologies exist today
 - Broadband connections
 - Algorithms and protocols
 - Inexpensive microprocessors
 - Accessible content & server networks

Conclusions

 Streaming media product design and implementation are extremely challenging

- Hardware challenges
 - Processor selection
 - Cost limitations
- Software challenges
 - Demanding algorithms
 - Optimization
 - ♦ Testing
- Audio/video quality requirements
- Time-to-market

Resources

- BDTI
 - www.BDTI.com
 - Digital Audio: Applications, Algorithms, and Implementation
 - Buyer's Guide to DSP Processors
- Forward Concepts
 - www.fwdconcepts.com
 - The Convergence of Audio
 - Beyond MP3

