OUTLINE

- Introduction
- Applications
- Formats and Standards for Streaming Audio and Video
- Hardware Considerations
- Software Considerations
- Additional Considerations
- Conclusions
INTRODUCTION

Challenges of Implementing Streaming Media Products

- Evolving technologies
 - Chips, communications standards
 - Compression formats, rights management
- Competitive market
 - Many players, big and small
 - Overlap between similar applications
- Many complex design considerations
 - Quality and feature selection
 - Cost and time-to-market constraints
Characteristics of (Strict) Streaming Media

- Media carried in packets
- Packets may arrive out of order
- Packets may not arrive at all!
- Network or some intermediary *not designed to carry data reliably in real-time*
- Starts playing before the entire audio/video clip is downloaded

Typical Big Picture
APPLICATIONS

Set-Top Boxes

- Devices providing interface to cable, satellite, or other services
- New applications emerging
- Today, categories overlap:
 - Home theater functions
 - Internet terminals
 - Digital recorder (e.g., TiVo, ReplayTV)
 - Interactive TV
 - Music
 - Media and/or services hub (e.g., Moxi)
Game Consoles

- Game consoles:
 - Stand-alone units
 - Display via TV set
 - Fast CPU
 - Graphics co-processors
 - Storage options
- Consoles & PCs require similar audio functions
- Consoles now support DVD playback
- Broadband communications ports will enable streaming media applications

Other Applications

- Internet applications
 - Audio apps becoming ubiquitous
 - Video apps gaining popularity
- Home audio/video
- Portable audio/video
- DAB – Digital Audio Broadcast
- DBS – Direct Broadcast Satellite
- Convergence devices
 - PDAs, cell phones, etc.
 - “Entertainment hubs”
SECRET FOR SUCCESS #1:

Select appropriate algorithm(s)
Selecting an Algorithm

- Compatibility with existing content
- Audio/video quality
- Bitrates supported
 - Match network/broadcast bandwidth?
- Resource requirements
 - CPU cycles, memory use
- Cost considerations
 - Licensing fees, royalties
 - Development effort
- May want to support multiple formats

Video Quality

- Display parameters
 - Frame resolution (pixels per frame)
 - Color resolution (# of possible colors)
 - Frame rate (frames per second)
- Visible compression artifacts
 - “Blocking” artifacts
 - Gibbs effect: blurring/shimmer around objects
 - “Ringing” artifacts
- Viewing tests are important
Audio Quality

- Speech quality
 - Is speech intelligible?
 - Can speaker be identified?
 - Is speech natural?
- Music / streaming media quality
 - “CD-quality”: 16 bits, 44.1 kHz
 - Misused term
- Listening tests are important

Video Algorithms

- Moving Pictures Experts Group (MPEG)
 - MPEG-1, MPEG-2, MPEG-4
 - MPEG-2 is the most popular video compression technique today
 - Ongoing standardization effort (MPEG-7)
- RealNetworks RealVideo 9
- Microsoft Windows Media Video 8
- Sorenson Video 3
 - Also, Sorenson Spark (Macromedia Flash)
- On2 Technologies VP5
Secret for Success #2:

In-depth understanding of algorithm(s) is necessary
HARDWARE CONSIDERATIONS

Processor Categories

- Custom ASICs
- ASSPs
- DSP Processors
- Media Processors
- Embedded RISC CPUs
- PC CPUs

Generality

Fixed Function

Fully Programmable
Arithmetic Formats

<table>
<thead>
<tr>
<th></th>
<th>Fixed point</th>
<th>Floating point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Cheap</td>
<td>Expensive</td>
</tr>
<tr>
<td>Ease of use</td>
<td>Tricky</td>
<td>Easy</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>Same as precision</td>
<td>Set by exponent: 1500 dB for single-precision IEEE</td>
</tr>
</tbody>
</table>
| **Precision** | 16 bit: 1 part in 64 K
24 bit: 1 part in 16 M
32 bit: 1 part in 4 G | Equal to mantissa precision (24 bit for IEEE single precision) |

Secret for Success #3:

Match the processor to the algorithm(s)
Performance Considerations

- Architectural features
 - DSP arithmetic operations
 - Data bandwidth, DSP addressing modes
 - Cache size
 - Bit-field manipulation
 - Control operation efficiency
 - I/O efficiency (e.g., interrupt handling)
- Numeric fidelity
 - Data type(s)
 - Saturation, rounding, scaling, block floating-point
- Power consumption

Resource Requirements

- Video requirements depend on:
 - Image size(s) supported by application
 - Desired frame rate
 - Encoding practices
- Real-time MPEG-2 video decode:
 - Example stream: DVD
 - 720x480 pixels, 30 fps
 - On a VLIW media processor:
 - ~80% of a 166 MHz TriMedia TM32 core
- Memory requirements vary from 100s of kbytes to several Mbytes
Resource Requirements

• Real-time MP3 decode example:
 - On a 24-bit DSP:
 - ~20 MIPS on a Motorola DSP56307
 - ~56 Kbytes total program + data memory

• Real-time Real G2 decode example:
 - On an embedded CPU:
 - ~27 MIPS on an NEC VR5432
 - ~48 Kbytes total program + data memory

• Don’t forget other functions:
 - Player application
 - Sample rate conversion, color space conversion
 - Tone controls
 - Rights management, I/O, …
Secret for Success #4:

Integration lowers costs and simplifies hardware design

Hardware Integration

- Chip cost vs. system cost
- Hardware system components
 - Memory
 - On-chip memory
 - Specialized external memory interfaces
 - I/O
 - Appropriate interfaces (e.g., I²S)
 - On-chip peripherals
- Off-the-shelf device or custom SoC?
SOFTWARE CONSIDERATIONS

Software Architecture

- Player
- Encoder(s)
- Decoder(s)
- I/O
- Operating System
Secret for Success #5:
No use reinventing the wheel: utilize available software modules

Operating Systems
- Provide real-time scheduling, task switching, inter-task communication, file system, (maybe) network stack
- Off-shelf candidates
 - Wind River VxWorks (set-top boxes)
 - Palm PalmOS (PDAs)
 - Microsoft WinCE (PDAs)
 - Embedded Linux (set-top boxes)
I/O Management Software

- Management of DAC, USB port, etc.
 - Interrupt service routines (ISRs)
 - DMA management
 - Buffering
- Network stack
 - IP, TCP, UDP, RTSP, RTP, ...
- Possible sources:
 - OS vendor
 - Processor vendor
 - Third parties

Player Software

- Responsible for
 - GUI
 - File management (if stored files available)
 - Play, stop, pause, fast-forward, rewind, ...
 - Error detection, correction
- Makes calls to decoder, encoder
- Maintains synchronization of audio and video
- Communicates with network
Secret for Success #6:

Create a usable and complete software development environment

Development Considerations

- Software
 - Components, modules, applications
- Processor Architecture
 - Complexity, data type(s)
 - Compatibility
- Tools
 - Compiler
 - Robustness, efficiency
 - Debugger, IDE, development boards, OS
 - Version control
- Support
 - From vendor, third parties, consultants
DSP Software Development

- Not like other kinds of SW development. Why?
 - Resource-hungry, complex algorithms
 - Severe cost limitations
 - Numeric fidelity
 - Hard real-time constraints
 - Time-to-market constraints

- Optimization is essential

Where to Start?

- Algorithm specifications
- Reference implementation
- Optimized implementation(s)
 - From algorithm vendor
 - From chip vendor
 - From third party developers
- Published papers
 - Often describe optimizations, pitfalls, etc.
- Independent software developers
 - May have valuable experience, expertise, and methodology
Secret for Success #7:

Watch out for outdated or erroneous code, specifications, and documentation

Some Pitfalls to Avoid

- Be wary of publicly available source code
 - May be outdated and/or lack features
 - Audio/video quality may be low
- Be wary of “reference” code
 - May be extremely inefficient
 - May be based on floating-point math
- Be wary of the published spec
 - May be outdated or incomplete
- Be sure to get all errata sheets and updates for spec (and for chip)
Secret for Success #8:

Focus optimization effort where it will be most effective

Software Optimization

- Divide and conquer
 - Profile of algorithm execution by function
 - Estimate optimization gain per function
 - Estimate optimization effort per function

- Optimization techniques
 - Algorithm transformation/modification
 - Processor-independent software optimization
 - Processor-specific optimization
Optimization Techniques

Algorithm Transformations

- Re-arrange block diagram
 - E.g., down-mix in frequency domain
- Coupling channel
 - E.g., re-calculate vs. store in memory
- Truncate where you can
- Recast or factor iMDCT
- Recast Huffman coding
 - Binary search tree?
 - ROM lookup tables?

Optimization Techniques

Processor-Independent Optimization

- Strength reduction
 - Avoid costly operations:
    ```c
    int i, k, x[N];
    ...
    for (i=0; i<N; i++)
      x[i] /= k;
    ```
    ```c
    int i, k, x[N], oneoverk;
    ...
    oneoverk = (1<<12)/k;
    for (i=0; i<N; i++)
      x[i] = (x[i]*oneoverk)>>12;
    ```
- Function in-lining
- Recycle otherwise idle buffers
Optimization Techniques
Processor-Specific Optimization

- Code optimizations
 - Loop unrolling
 - Change memory map
 - Use specialized instructions
 - ‘C54xx instruction to count 1s, 0s
 - Tricks with bit counter
- Hardware optimizations
 - Customize instructions
 - Accelerators and co-processors

ADDITIONAL CONSIDERATIONS
Secret for Success #9:

Plan out the testing of the implementation in advance

Testing

- Presents technical challenges
 - Vast amounts of data
 - Development platform limitations
- Audio/video quality
 - Objective measures, subjective tests
 - Varies with type of content
- Modes (e.g., sample rates, frame sizes, bit rate, compression)
- Real-time
 - Data-dependent execution time
 - Dynamic processor features
Secret for Success #10:
Give the software “room to grow”

Future-proofing

- Standards & algorithms are evolving
 - New algorithms tend to consume more CPU power and memory than older ones
- Security technology still under development
- Products may need to be field-upgradeable
 - Must support new software downloads
 - Must provide sufficient CPU power and memory for future algorithms
Conclusions

- Streaming media applications promise to revolutionize communication and entertainment
- Key technologies exist today
 - Broadband connections
 - Algorithms and protocols
 - Inexpensive microprocessors
 - Accessible content & server networks
Conclusions

● Streaming media product design and implementation are extremely challenging
 ■ Hardware challenges
 ◆ Processor selection
 ◆ Cost limitations
 ■ Software challenges
 ◆ Demanding algorithms
 ◆ Optimization
 ◆ Testing
 ■ Audio/video quality requirements
 ■ Time-to-market

Resources

● BDTI
 ■ www.BDTI.com
 ■ *Digital Audio: Applications, Algorithms, and Implementation*
 ■ *Buyer’s Guide to DSP Processors*

● Forward Concepts
 ■ www.fwdconcepts.com
 ■ *The Convergence of Audio*
 ■ *Beyond MP3*