
August 1998 51

DSP Processors
Hit the
Mainstream

E
ngineering terminology has a way of creeping
into the public tongue, often initially by way
of product marketing. For example, the time
is long gone when only a few people were
familiar with the unit “megahertz.” Although

people are perhaps not entirely certain what a mega-
hertz is, they are perfectly comfortable discussing and
comparing the megahertz ratings of their computers.

In a similar way, many people became familiar with
the word “digital” when companies introduced CD
players in the 1980s.

These days, the once obscure engineering term
“DSP” (short for digital signal processing) is also
working its way into common use. It has begun to
crop up on the labels of an ever wider range of prod-
ucts, from home audio components to answering
machines. This is not merely a reflection of a new mar-
keting strategy, however; there truly is more digital
signal processing inside today’s products than ever
before.

Consider this: Maxtor Corp. recently reported
receiving its 10-millionth DSP processor from Texas
Instruments for use in its disk drives. As further evi-
dence, Forward Concepts, a DSP market research firm,
reports that the 1997 market for DSP processors was
approximately 3 billion dollars. But why is the market
for DSP processors booming?

The answer is somewhat circular: As microproces-
sor fabrication processes have become more sophisti-
cated, the cost of a microprocessor capable of
performing DSP tasks has dropped significantly to the
point where such a processor can be used in consumer
products and other cost-sensitive systems. As a result,
more and more products have begun using DSP
processors, fueling demand for faster, smaller, cheaper,
more energy-efficient chips. These smaller, cheaper,
more efficient chips open the door for a new wave of
products to implement signal-processing capabilities.
It’s like a positive feedback loop.

There has always been much potential benefit to
adding signal processing capabilities to products, but
until recently, it’s simply been too expensive to be prac-
tical in most cases.

WHAT MAKES IT A DSP PROCESSOR?
Although fundamentally related, DSP processors are

significantly different from general-purpose processors
(GPPs) like the Intel Pentium or IBM/Motorola
PowerPC. To understand why, you need to know what
is involved in signal processing. What is it about sig-
nal processing computations that spurred the devel-
opment of a different type of microprocessor?

Signal filtering
As a case study, we’ll consider one of the most com-

mon functions performed in the digital domain, sig-
nal filtering, which is simply manipulating a signal to
improve signal characteristics. For example, filtering
can remove noise or static from a signal, thereby
improving its signal-to-noise ratio.

It may not be obvious why it is desirable to filter sig-
nals using a microprocessor rather than analog com-
ponents, but consider the advantages:

• Analog filters (and analog circuitry in general) are
subject to behavior variation depending on envi-
ronmental factors, such as temperature. Digital
filters are essentially immune to such environ-
mental effects.

• Digital filters are easily duplicated to within very
tight tolerances, since their behavior does not
depend on a combination of components, each of
which deviates to some degree from its nominal
behavior.

• Once it is manufactured, the defining character-
istics of an analog filter (such as its pass-band fre-
quency range) are not easily changed. By
implementing a filter digitally using a micro-

Increasingly affordable digital signal processing extends the functionality
of embedded systems and so will play a larger role in new consumer
products. This tutorial explains what DSP processors are and what they do.
It also offers a guide to evaluating them for use in a product or application.

Jennifer Eyre
Jeff Bier
Berkeley
Design 
Technology
Inc. (BDTI)

Co
ve

r F
ea

tu
re

.



52 Computer

processor, you can change filter characteristics
simply by reprogramming the device. 

There are several kinds of digital filters; one com-
monly used type is called a finite impulse response
(FIR) filter, illustrated in Figure 1. The mechanics of
the basic FIR filter algorithm are straightforward. The
blocks labeled D in Figure 1 are unit delay operators;
their output is a copy of the input sample, delayed by
one sample period. A series of storage elements (usu-
ally memory locations) are used to implement a series
of these delay elements (this series is called a delay
line).1

At any given time, N−1 of the most recently received
input samples reside in the delay line, where N is the
total number of input samples used in the computation
of each output sample. Input samples are designated
xN; the first input sample is x1, the next is x2, and so on.

Each time a new input sample arrives, the FIR filter
operation shifts previously stored samples one place to
the right along the delay line. It then computes a new
output sample by multiplying the newly arrived sam-
ple and each of the previously stored input samples
by the corresponding coefficient. In the figure, coeffi-
cients are represented as ck, where k is the coefficient
number. The summation of the multiplication prod-
ucts forms the new output sample, yN.

We call the combination of a single delay element,
the associated multiplication operation, and the asso-
ciated addition operation a tap. The number of taps
and the values chosen for the coefficients define the
filter characteristics. For example, if the values of the
coefficients are all equal to the reciprocal of the num-
ber of taps, 1/N, the filter performs an averaging oper-
ation, one form of a low-pass filter. 

More commonly, developers use filter design meth-
ods to determine coefficients that yield a desired fre-
quency response for the filter. In mathematical terms,
FIR filters perform a series of dot products: They take
an input vector and a vector of coefficients, perform
pointwise multiplication between the coefficients and
a sliding window of input samples, and accumulate

the results of all the multiplications to form an out-
put sample. 

This brings us to the most popular operation in
DSP: the multiply-accumulate (MAC).

Handling MACs
To implement a MAC efficiently, a processor must

efficiently perform multiplications. GPPs were not
originally designed for multiplication-intensive
tasks—even some modern GPPs require multiple
instruction cycles to complete a multiplication because
they don’t have dedicated hardware for single-cycle
multiplication. The first major architectural modifi-
cation that distinguished DSP processors from the
early GPPs was the addition of specialized hardware
that enabled single-cycle multiplication.2

DSP processor architects also added accumulator
registers to hold the summation of several multiplica-
tion products. Accumulator registers are typically
wider than other registers, often providing extra bits,
called guard bits, to avoid overflow.

To take advantage of this specialized multiply-accu-
mulate hardware, DSP processor instruction sets
nearly always include an explicit MAC instruction.
This combination of MAC hardware and a special-
ized MAC instruction were two key differentiators
between early DSP processors and GPPs.

Memory architectures
Another highly visible difference between DSP

processors and GPPs lies in their memory structure.
von Neumann architecture. Traditionally, GPPs have

used a von Neumann memory architecture,3 illus-
trated by Figure 2a. In the von Neumann architecture,
there is one memory space connected to the processor
core by one bus set (an address bus and a data bus).
This works perfectly well for many computing appli-
cations; the memory bandwidth is sufficient to keep
the processor fed with instructions and data.

The von Neumann architecture is not a good design
for DSP, however, because typical DSP algorithms
require more memory bandwidth than the von

cN−1c2c1

xN−1
xN

cN

x2

yN

x1

yN = xN × c1 + xN−1 × c2 + x2 × cN−1 + x1 × cN

D D D

x x

++

x

+

x

TapFigure 1. The finite
impulse response
(FIR) filters is a typical
DSP algorithm. FIR
filters are useful for
filtering noise, and
other important func-
tions.

.



Neumann architecture can provide. For example, to
sustain a throughput of one FIR filter tap per instruc-
tion cycle (the hallmark of DSP processor perfor-
mance), the processor must complete one MAC and
make several accesses to memory within one instruc-
tion cycle. Specifically, in the straightforward case, the
processor must

• fetch the MAC instruction,
• read the appropriate sample value from the delay

line,
• read the appropriate coefficient value, and
• write the sample value to the next location in the

delay line, in order to shift data through the delay
line.

Thus, the processor must make a total of four
accesses to memory in one instruction cycle. (In prac-
tice, most processors use various techniques to reduce
the actual number of memory accesses needed to three
or even two per tap. Nevertheless, virtually all proces-
sors require multiple memory accesses within one
instruction cycle to compute an FIR filter at a sus-
tained rate of one tap per instruction cycle.)

In a von Neumann memory architecture, four mem-
ory accesses would consume a minimum of four
instruction cycles. Although most DSP processors
include the arithmetic hardware necessary to perform
single-cycle MACs, they wouldn’t be able to realize
the goal of one tap per cycle using a von Neumann
memory structure; the processor simply wouldn’t be
able to retrieve samples and coefficients fast enough.
For this reason, instead of a von Neumann architec-
ture, most DSP processors use some form of Harvard
architecture, illustrated by Figure 2b.

Harvard architecture. In a Harvard memory archi-
tecture, there are two memory spaces, typically par-
titioned as program memory and data memory
(though there are modified versions that allow some
crossover between the two). The processor core con-
nects to these memory spaces by two bus sets, allow-
ing two simultaneous accesses to memory. This
arrangement doubles the processor’s memory band-
width, and it is crucial to keeping the processor core
fed with data and instructions. The Harvard archi-
tecture is sometimes further extended with additional
memory spaces and/or bus sets to achieve even higher
memory bandwidth. However, the trade-off is that
extra bus sets require extra power and chip space, so
most DSP processors stick with two.

The Harvard memory architecture used in DSP
processors is not unlike the memory structures used in
modern high-performance GPPs such as the Pentium
and PowerPC. Like DSPs, high-performance GPPs
often need to make multiple memory accesses per
instruction cycle (because of superscalar execution
and/or because of instructions’ data requirements). In
addition, high-performance GPPs face another prob-
lem: With clock rates often in excess of 200 MHz, it
can be extremely expensive (and sometimes impossi-
ble) to obtain a memory chip capable of keeping pace
with the processor. Thus, high-performance GPPs
often cannot access off-chip memory at their full clock
speed. Using on-chip cache memory is one way that
GPPs address both of these issues. 

High-performance GPPs typically contain two on-
chip memory caches—one for data and one for
instructions—which are directly connected to the
processor core. Assuming that the necessary infor-
mation resides in cache, this arrangement lets the

August 1998 53

Processor core

Memory

Address bus

Data bus 

Processor core

Memory A

Address bus 1

Data bus 1

Data baseAddress bus 2

Data bus 2

Memory B

(b)(a)

Figure 2. Many gen-
eral-purpose proces-
sors use an (a) von
Neumann memory
architecture, which
permits only one
access to memory at
a time. While
adequate for general-
purpose applications,
the von Neumann
architecture’s mem-
ory bandwidth is
insufficient for many
DSP applications.
DSP processors typi-
cally use a (b)
Harvard memory
architecture, which
permits multiple
simultaneous mem-
ory accesses. 

.



54 Computer

processor retrieve instruction and data words
at full speed without accessing relatively slow,
off-chip memory. It also enables the processor
to retrieve multiple instructions or data words
per instruction cycle.

Physically, this combination of dual on-chip
memories and bus connections is nearly identi-
cal to a Harvard memory architecture. Logically,
however, there are some important differences
in the way DSP processors and GPPs with caches
use their on-chip memory structures.

Difference from GPPs. In a DSP processor, the
programmer explicitly controls which data and
instructions are stored in the on-chip memory
banks. Programmers must write programs so
that the processor can efficiently use its dual bus

sets. In contrast, GPPs use control logic to determine
which data and instruction words reside in the on-
chip cache, a process that is typically invisible to the
programmer. The GPP programmer typically does not
specify (and may not know) which instructions and
data will reside in the caches at any given time. From
the GPP programmer’s perspective, there is generally
only one memory space rather than the two memory
spaces of the Harvard architecture.

Most DSP processors don’t have any cache; as
described earlier, they use multiple banks of on-chip
memory and multiple bus sets to enable several mem-
ory accesses per instruction cycle. However, some DSP
processors do include a very small, specialized, on-
chip instruction cache, separate from the on-chip
memory banks and inside the core itself. This cache is
used for storing instructions used in small inner loops
so that the processor doesn’t have to use its on-chip
bus sets to retrieve instruction words. By fetching
instructions from the cache, the DSP processor frees
both on-chip bus sets to retrieve data words.

Unlike GPPs, DSP processors almost never incor-
porate a data cache. This is because DSP data is typi-
cally streaming: That is, the DSP processor performs
computations with each data sample and then discards
the sample, with little reuse.

Zero-overhead looping
It may not be obvious why a small, specialized

instruction cache would be particularly useful, until
you realize that one common characteristic of DSP
algorithms is that most of the processing time is spent
executing instructions contained within relatively
small loops.

In an FIR filter, for example, the vast majority of
processing takes place within a very small inner loop
that multiplies the input samples by their corre-
sponding coefficients and adds the results. This is why
the small on-chip instruction cache can significantly
improve the processor’s performance on DSP algo-

rithms. It is also why most DSP processors include spe-
cialized hardware for zero-overhead looping. The term
zero-overhead looping means that the processor can
execute loops without consuming cycles to test the
value of the loop counter, perform a conditional
branch to the top of the loop, and decrement the loop
counter.

In contrast, most GPPs don’t support zero-overhead
hardware looping. Instead, they implement looping
in software. Some high-performance GPPs achieve
nearly the same effect as hardware-supported zero-
overhead looping by using branch prediction hard-
ware. This method has drawbacks in the context of
DSP programming, however, as discussed later.

Fixed-point computation
Most DSP processors use fixed-point arithmetic

rather than floating-point. This may seem counter-
intuitive, given the fact that DSP applications must
pay careful attention to numeric fidelity—which is
much easier to do with a floating-point data path. DSP
processors, however, have an additional imperative:
They must be inexpensive. Fixed-point machines tend
to be cheaper (and faster) than comparable floating-
point machines. 

To maintain numeric accuracy without the benefit
of a floating-point data path, DSP processors usually
include, in both the instruction set and underlying
hardware, good support for saturation arithmetic,
rounding, and shifting.

Specialized addressing
DSP processors often support specialized address-

ing modes that are useful for common signal-pro-
cessing operations and algorithms. Examples include
modulo (circular) addressing (which is useful for
implementing digital-filter delay lines) and bit-reversed
addressing (which is useful for performing a com-
monly used DSP algorithm, the fast Fourier trans-
form). These highly specialized addressing modes are
not often found on GPPs, which must instead rely on
software to implement the same functionality.

EXECUTION TIME PREDICTABILITY
Aside from differences in the specific types of pro-

cessing performed by DSPs and GPPs, there are also
differences in their performance requirements. In most
non-DSP applications, performance requirements are
typically given as a maximum average response time.
That is, the performance requirements do not apply
to every transaction, but only to the overall perfor-
mance.

Hard real-time constraints
In contrast, the most popular DSP applications

(such as cell phones and modems) are hard real-time

One common 
characteristic of
DSP algorithms is
that most of the 

processing time is
spent executing

instructions
contained within 
relatively small

loops.

.



applications—all processing must take place within
some specified amount of time in every instance. This
performance constraint requires programmers to
determine exactly how much processing time each
sample will require; or at the very least, how much
time will be consumed in the worst-case scenario. At
first blush, this may not seem like a particularly impor-
tant point, but it becomes critical if you attempt to use
a high-performance GPP to perform real-time signal
processing.

Execution time predictability probably won’t be an
issue if you plan to use a low-cost GPP for real-time
DSP tasks, because low-cost GPPs (like DSP proces-
sors) have relatively straightforward architectures and
easy-to-predict execution times. However, most real-
time DSP applications require more horsepower than
low-cost GPPs can provide, so the developer must
choose either a DSP processor or a high-performance
GPP. But which is the best choice? In this context, exe-
cution-time predictability plays an important role.

Problems with some GPPs
For example, some high-performance GPPs incor-

porate complicated algorithms that use branching his-
tory to predict whether a branch is likely to be taken.
The processor then executes instructions speculatively,
on the basis of that prediction. This means that the
same section of code may consume a different number
of instruction cycles, depending on events that take
place beforehand. 

When a processor design layers many different
dynamic features—such as branch prediction and
caching—on top of each other, it becomes nearly
impossible to predict how long even a short section
of code will take to execute. Although it may be pos-
sible for programmers to determine the worst-case
execution time, this may be an order of magnitude
greater than the actual execution time. Assuming
worst-case behavior can force programmers to be
extremely conservative in implementing real-time DSP
applications on high-performance GPPs. A lack of
execution time predictability also adversely affects the
programmer’s (or compiler’s) ability to optimize code,
as we will discuss later.

Easy for DSP processors
Let’s compare this to the effort required to predict

execution times on a DSP processor. Some DSP proces-
sors use caches, but the programmer (not the processor)
decides which instructions go in them, so it’s easy to tell
whether instructions will be fetched from cache or from
memory. DSP processors don’t generally use dynamic
features such as branch prediction and speculative exe-
cution. Hence, predicting the amount of time required
by a given section of code is fairly straightforward on
a DSP. This execution-time predictability allows pro-

grammers to confidently push the chip’s perfor-
mance limits.

FIXED-POINT DSP INSTRUCTION SETS
Fixed-point DSP processor instruction sets

are designed with two goals in mind. They must

• enable the processor to perform multiple
operations per instruction cycle, thus
increasing per-cycle computational effi-
ciency (a goal also supported by endowing
the processor with multiple execution units
capable of parallel operation), and

• minimize the amount of memory space
required to store DSP programs (critical in
cost-sensitive DSP applications because
memory contributes substantially to the
overall system cost).

To accomplish these goals, DSP processor instruction
sets generally allow programmers to specify several
parallel operations in a single instruction. However, to
keep word size small, the instructions only permit the
use of certain registers for certain operations and do
not allow arbitrary combinations of operations. The
net result is that DSP processors tend to have highly
specialized, complicated, and irregular instruction
sets.

To keep the processor fed with data without bloat-
ing program size, DSP processors almost always allow
the programmer to specify one or two parallel data
moves (along with address pointer updates) in paral-
lel with certain other operations, like MACs.

Typical instruction. As an illustration of a typical
DSP instruction, consider the following Motorola
DSP56300 instruction (X and Y denote the two mem-
ory spaces of the Harvard architecture):

MAC X0,Y0,A X:(R0)+,X0 Y:(R4)+N4,Y0 

This instruction directs the DSP56300 to

• multiply the contents of registers X0 and Y0, 
• add the result to a running total kept in accu-

mulator A,
• load register X0 from the X memory location

pointed to by register R0,
• load register Y0 from the Y memory location

pointed to by R4,
• postincrement R0 by one, and
• postincrement R4 by the contents of register N4.

This single instruction line includes all the opera-
tions needed to calculate an FIR filter tap. It is clearly
a highly specialized instruction designed specifically
for DSP applications. The price for this efficiency is

August 1998 55

Most DSP
applications depend
on processing taking

place within some
specified amount of

time in every
instance. This 
execution time 
predictability is 

difficult to provide
on high-performance

GPPs.

.



56 Computer

an instruction set that is neither intuitive nor
easy to use (in comparison to typical GPP
instruction sets).

Difference from GPPs. GPP programmers typ-
ically don’t care about a processor instruction
set’s ease of use because they generally develop
programs in a high-level language, such as C or
C++. Life isn’t quite so simple for DSP program-
mers, because mainstream DSP applications are
written (or at least have portions optimized) in
assembly language. This turns out to have impor-
tant implications in comparing processor per-
formance, but we’ll get to that later.

There are two main reasons why DSP proces-
sors usually aren’t programmed in high-level
languages. First, most widely used high-level
languages, such as C, are not well suited for

describing typical DSP algorithms. Second, the com-
plexity of DSP architectures—with their multiple
memory spaces, multiple buses, irregular instruction
sets, and highly specialized hardware—make it diffi-
cult to write efficient compilers.

It is certainly true that a compiler can take C source
code and generate functional assembly code for a DSP,
but to get efficient code, programmers invariably
optimize the program’s critical sections by hand. DSP
applications typically have very high computational
demands coupled with strict cost constraints, making
program optimization essential. For this reason, pro-
grammers often consider the “palatability” (or lack
thereof) of a DSP processor’s instruction set as a key
component in its overall desirability.

Because DSP applications require highly optimized
code, most DSP vendors provide a range of develop-
ment tools to assist DSP processor programmers in
the optimization process. For example, most DSP
processor vendors provide processor simulation tools
that accurately model the processor’s activity during
every instruction cycle. This is a valuable tool both for
ensuring real-time operation and for code optimiza-
tion.

GPP vendors, on the other hand, don’t usually pro-
vide this type of development tool, mainly because
GPP programmers typically don’t need this level of
detailed information. The lack of a cycle-accurate sim-
ulator for a GPP can be a real problem for DSP appli-
cation programmers. Without one, it can be nearly
impossible to predict the number of cycles a high-per-
formance GPP will require for a given task. Think
about it: If you can’t tell how many cycles are required,
how can you tell if the changes you make are actually
improving code performance?

TODAY’S DSP LANDSCAPE
Like GPPs, the performance and price of DSP

processors vary widely.4

Low-cost workhorses
In the low-cost, low-performance range are the

industry workhorses. Included in this group are
Analog Devices’ ADSP-21xx, Texas Instruments’
TMS320C2xx, and Motorola’s DSP560xx families.
These processors generally operate at around 20 to
50 native MIPS (that is, a million instructions per sec-
ond, not Dhrystone MIPS) and provide good DSP per-
formance while maintaining very modest power
consumption and memory usage. They are typically
used in consumer products that have modest DSP per-
formance requirements and stringent energy con-
sumption and cost constraints, like disk drives and
digital answering machines.

Low-power midrange
Midrange DSP processors achieve higher perfor-

mance through a combination of increased clock
speed and more sophisticated hardware. DSP proces-
sors like the Lucent Technologies DSP16xx and Texas
Instruments TMS320C54x operate at 100 to 120
native MIPS and often include additional features,
such as a barrel shifter or instruction cache, to improve
performance on common DSP algorithms.

Processors in this class also tend to have more
sophisticated (and deeper) pipelines than their lower
performance cousins. These processors can have sub-
stantially better performance while still keeping energy
and power consumption low. Processors in this per-
formance range are typically used in wireless telecom-
munications applications and high-speed modems,
which have relatively high computational demands
but often require low power consumption.

Diversified high-end
Now we come to the high-end DSP processors. It is

in this group that DSP architectures really start to
branch out and diversify, propelled by the demand for
ultrafast processing. DSP processor architects who
want to improve performance beyond the gains
afforded by faster clock speeds must get more useful
DSP work out of every instruction cycle. Of course,
architects designing high-performance GPPs are moti-
vated by the same goal, but the additional goals of
maintaining execution time predictability, minimizing
program size, and limiting energy consumption typi-
cally do not constrain their design decisions. There are
several ways DSP processor architects increase the
amount of work accomplished in each cycle; we dis-
cuss two approaches here.

Enhanced conventional DSP processor. The first
approach is to extend the traditional DSP architecture
by adding more parallel computational units to the
data path, such as a second multiplier or adder. This
approach requires an extended instruction set that
takes advantage of the additional hardware by encod-

A compiler can take
C source code and

generate functional
assembly code for a

DSP, but to get 
efficient code, 
programmers 

invariably optimize
the program’s 

critical sections 
by hand. 

.



ing even more operations in a single instruction and
executing them in parallel. We refer to this type of
processor as an enhanced conventional DSP because
the approach is an extension of the established DSP
architectural style.

The Lucent Technologies DSP16210, which has two
multipliers, an arithmetic logic unit, an adder (separate
from the ALU), and a bit manipulation unit, is a prime
example of this approach. Lucent also equipped the
DSP16210 with two 32-bit data buses, enabling it to
retrieve four 16-bit data words from memory in every
instruction cycle (assuming the words are retrieved in
pairs). These wider buses keep the dual multipliers
and other functional units from starving for data. The
DSP16210, which executes at 100 native MIPS, offers
a strong boost in performance while maintaining a
cost and energy footprint similar to previous genera-
tions of DSP processors. It is specifically targeted at
high-performance telecommunications applications,
and it includes specialized hardware to accelerate com-
mon telecommunications algorithms.

Multiple-instruction issue. Another way to get more
work out of every cycle is to issue more than one
instruction per instruction cycle. This is common in
high-end GPPs, which are often 2- or even 4-way
superscalar (they can issue and execute up to 2 or 4
instructions per cycle). It’s a relatively new technique
in the DSP world, however, and has mostly been
implemented using VLIW (very long instruction
word) rather than superscalar architectures.

A prime example of this approach is the much-
publicized Texas Instruments TMS320C6201. This
VLIW processor pulls in up to 256 bits of instruction
words at a time, breaks them into as many as eight
32-bit subinstructions, and passes them to its eight
independent computational units. In the best case, all
eight units are active simultaneously, and the proces-
sor executes eight subinstructions in parallel.

The TMS320C6201 has a projected clock rate of
200 MHz, which translates into a peak MIPS rating
of 1,600. The catch here is that each subinstruction is
extremely simple (by DSP standards). Thus, it may take
several TMS320C6201 instructions to specify the same
amount of work that a conventional DSP can specify
in a single instruction. In addition, it is often not pos-
sible to keep all eight execution units running in par-
allel; more typically, five or six will be active at any one
time. The performance gain afforded by using this
VLIW approach combined with a high clock rate is
substantial. However, it is not nearly as high as you
might expect from comparing the 1,600 MIPS rating
with the 100 MIPS rating of the Lucent DSP16210.
This disparity arises because a typical DSP16210
instruction accomplishes more work than a typical
TMS320C6201 instruction, a critical distinction that
simple metrics such as MIPS fail to capture.

Like most VLIW processors, the TMS-
320C6201 consumes much more energy than
traditional DSP processors, and requires rela-
tively large amount of program memory. For
these reasons, the chip is not well suited for
portable applications. TI gave up energy and
memory efficiency in exchange for ultrahigh
performance, producing a processor intended
for line-powered applications, such as modem
banks, where it can take the place of several
lower performance DSP processors.

GPPS GET DSP
In the past few years, GPP developers have

begun enhancing their processor designs with
DSP extensions. For example, Intel added the
Pentium’s MMX extensions, which specifically sup-
port DSP and other multimedia tasks. MMX also
gives the Pentium SIMD (single instruction, multiple
data) capabilities, significantly improving the proces-
sor’s speed on DSP algorithms.

Many low- and moderate-performance GPPs are
now available in versions that include DSP hardware,
resulting in hybrid GP/DSP processors. Hitachi, for
example, offers a DSP-enhanced version of its SH-2
microcontroller, called the SH-DSP. Advanced RISC
Machines, a vendor of licensable microcontroller
cores for use in custom chips, recently introduced a
licensable DSP coprocessor core called Piccolo.
Piccolo is intended to augment ARM’s low-end GPP,
the ARM7, with signal-processing capabilities. In
short, just about all of the major GPP vendors are
adding DSP enhancements to their processors in one
form or another, and the distinction between GPPs
and DSP processors is not quite as clear as it once was.

WHICH ONE IS BETTER?
There are a variety of metrics you can use to judge

processor performance. The most often cited is speed,
but other metrics, such as energy consumption or
memory usage, can be equally important, especially
in embedded-system applications. Like developers
using GPPs, DSP engineers must be able to accurately
compare many facets of processor performance so
that they can decide which processor to choose.

In light of the ever-increasing number of processor
families for DSP applications, it has become more dif-
ficult than ever for system designers to choose the
processor that will provide the best performance in a
given application.

In the past, DSP designers have relied on MIPS or
similar metrics for a rough idea of the relative horse-
power provided by various DSP chips. Unfortunately,
as processor architectures have diversified, traditional
metrics such as MIPS have become less relevant and
often downright misleading. Engineers must be wary

August 1998 57

Unfortunately, 
as processor 

architectures have 
diversified,

traditional metrics
such as MIPS have

become less
relevant and often

downright 
misleading.

.



58 Computer

of the performance claims presented in sales
brochures; all MIPS are not created equal.

The root problem with simple metrics like MIPS is
that they don’t actually measure performance, because
performance is a function of more than just the num-
ber of instructions executed per second. Performance
is also a function of how much work is accomplished
in each instruction, which depends on the processor’s
specific architecture and instruction set. Thus, when
processor vendors cite MIPS ratings, they are leaving
out a crucial piece of information: the amount of work
each instruction performs.

Clearly, engineers need a way to gauge processor
performance on DSP algorithms that isn’t tied to a
specific architecture. But what’s the best way to do
that?

One possibility would be to implement complete
DSP applications on each processor under considera-
tion, and compare the amount of time each requires
to complete the given task. This method is often used
for benchmarking general-purpose computer systems
that run applications written in a high-level language.
Once developers finish an application, they can easily

recompile it for different computers and measure the
run time. However, for reasons discussed earlier, DSP
systems are usually programmed (at least to some
degree) in assembly language.

This makes full-application benchmarks unattrac-
tive for DSP performance comparisons for two main
reasons:

• If the application is programmed in a high-level lan-
guage, the quality of the compiler will greatly affect
performance results. Hence, the benchmark would
measure both the processor and the compiler.

• Although it’s certainly possible to develop and
optimize entire applications in assembly code, it
is impractical for the purposes of comparing
processor performance because the application
would have to be recoded and optimized on every
processor under consideration.

Benchmarks
Fortunately, one of the characteristics of DSP appli-

cations is that the majority of the processing effort is
often concentrated in a few relatively small pieces (ker-
nels) of the program, which can be isolated and used
as the basis for benchmark comparisons.

Berkeley Design Technology Inc. (BDTI), a DSP
technology analysis and software development firm,
has developed a DSP benchmarking methodology
based on a group of DSP algorithm kernels.

Algorithm kernels, such as the FIR filter algorithm,
form the heart of many DSP applications. They make
good benchmark candidates because of their inherent
relevance to DSP and because they are small enough
to implement and optimize in assembly code in a rea-
sonable amount of time.

Over the past six years, BDTI has implemented their
suite of kernel-based benchmarks, the BDTI
Benchmarks, on a wide variety of processors. By look-
ing at benchmark results, designers can see exactly
which algorithm kernels a given processor performs
efficiently. Given information about the relative
importance of each algorithm in the overall applica-
tion (we refer to this information as an application
profile), system designers can accurately assess which
DSP is best for the application under consideration.

The results of BDTI’s comprehensive benchmark-
ing effort provide an extremely detailed, in-depth
analysis of processors’ performance on typical DSP
algorithms. However, we still would like a single-num-
ber metric for quick comparisons. For this reason,
BDTI introduced and trademarked a new composite
speed metric, the BDTImark, last year.

The BDTImark
The BDTImark takes the execution time results

from all of the BDTI Benchmarks and crunches them
into one number. It provides a far more accurate

ARM ARM7TDMI/Piccolo
70 MIPS 14

Hitachi SH-DSP
66 MIPS 17

Intel Pentium
233 MHz 26

Lucent DSP1620
120 MIPS 22

Lucent DSP16210
100 MIPS 36

Motorola DSP56011
47.5 MIPS 13

Motorola PowerPC 604e
350 MHz

BDTImark

66

TI TMS320C204
40 MIPS 7

TI TMS320C6201
1,336 MIPS 86

TI TMS320VC549
100 MIPS 25

ADI ADSP-2183
52 MIPS 13

Figure 3. Comparison
of selected commer-
cial DSP, general-
purpose, and hybrid
GP/DSP processors by
BDTImarks and MIPS
(or MHz for GPPs).
BDTImark is a compos-
ite measure based on
measurements from a
set of DSP-specific
benchmarks. Note how
MIPS ratios do not
necessarily provide a
good indication of
comparative DSP per-
formance. Scores for
other processors are
available at
http://www.bdti.com.

.



assessment of a processor’s DSP performance than
other simplified metrics (such as MIPS) because it is a
measurement of execution speed on actual DSP algo-
rithms. In Figure 3, we present the BDTImark scores
for a variety of DSP, GP, and hybrid DSP/GP proces-
sors, including those discussed earlier.

Clearly, a quick comparison of BDTImark scores
and MIPS ratings shows that a higher MIPS rating
does not necessarily translate into better DSP perfor-
mance.4

For example, consider the BDTImark scores for the
100-MIPS DSP16210 and the 120-MIPS DSP1620.
The DSP16210 is about 1.5 times faster, because it has
an extra multiplier and other hardware that lets it do
substantially more work in every instruction cycle.
The TMS320C6201, shown here at 167 MHz (1,336
MIPS), achieves an impressive BDTImark score, but is
not 13 times faster than the DSP16210, as might be
expected from the two processors’ MIPS ratio.

Another point of interest is that the score for the
Pentium is actually higher than the scores for many of
the low- to moderate-performance DSP processors—
a surprising result mostly attributable to the proces-
sor’s 233-MHz clock rate. The Motorola PowerPC
604e performs even better; in fact, it is faster on the
DSP benchmarks than nearly all the DSP processors.

This observation leads to a common question: Why
use a DSP processor at all when the DSP capabilities
of high-end GPPs such as the PowerPC 604e are
becoming so strong?

The answer is, there’s more to it than raw perfor-
mance. Although high-end GPPs are able to perform
DSP work at a rate comparable to many DSP proces-
sors, they achieve this performance by using compli-
cated dynamic features. For this reason, high-end GPPs
are not well suited for real-time applications—dynamic
features cause real problems both in terms of guaran-
teeing real-time behavior and optimizing code. In addi-
tion, the theoretical peak performance of a high-end
GPP may never be achieved in real-time DSP programs,
because the programmer may have to assume worst-
case behavior and write the software accordingly. 

High-end GPPs also tend to cost substantially more
money and consume more power than DSP proces-
sors, an unacceptable combination in, for example,
highly competitive portable telecommunications
applications. And, although software development
tools for the most widely used GPPs are much more
sophisticated than those of their DSP counterparts,
they are not geared toward DSP software development
and lack features that are essential in the DSP world.

I t will be interesting to see how well the more recent
additions to the DSP world—the hybrid GP/DSP
processors—can penetrate the market. These

processors, such as the ARM7/Piccolo and the SH-

DSP, don’t suffer from the drawbacks that accom-
pany high-end GPPs, but they also don’t offer the
same level of performance.

The bottom line is, if there is a high-performance
GPP in the existing system (as in the case of a PC), it
may be attractive to use for signal processing and to
avoid adding a separate DSP processor. And, partic-
ularly in the case of GPPs enhanced with DSP exten-
sions, it may be possible to get good DSP performance
out of the system without adding a separate DSP
processor. If you are building a DSP application from
scratch, however, it is likely that a dedicated DSP or
hybrid GP/DSP processor will be a better choice, for
reasons of economy, lower power consumption, and
ease of development.

Though high-performance GPPs have already
begun to challenge DSP speed, DSP processors aren’t
likely to be supplanted in the near future because they
are able to provide extremely strong signal process-
ing performance with unmatched economy. ❖

References
1. R. Lyons, Understanding Digital Signal Processing,

Addison Wesley Longman, Reading, Mass., 1997.
2. P. Lapsley et al., DSP Processor Fundamentals, IEEE

Press, New York, 1997.
3. J. Hennessy and D. Patterson, Computer Organization

and Design, Morgan Kaufmann, San Francisco, 1998.
4. Buyer’s Guide to DSP Processors, Berkeley Design Tech-

nology Inc., Berkeley, Calif., 1994, 1995, and 1997.

Jennifer Eyre is an engineer and a technical writer at
Berkeley Design Technology Inc. where she analyzes
and evaluates microprocessors used in DSP applica-
tions. Eyre received a BSEE and an MSEE from
UCLA. She is a member of Eta Kappa Nu.

Jeff Bier is cofounder and general manager of BDTI,
where he oversees DSP technology analysis and soft-
ware development services. He has extensive experi-
ence in software, hardware, and design tool
development for DSP and control applications. Bier
received a BS from Princeton University and an MS
from the University of California, Berkeley. He is a
member of the IEEE Design and Implementation of
Signal Processing Systems (DISPS) Technical Com-
mittee.

Contact the authors at BDTI, 2107 Dwight Way, 
Second Floor, Berkeley, CA 94704; {eyre, bier}@
bdti.com.

August 1998 59

.


