The Evolution of DSP Processors

Berkeley Design Technology, Inc.
2107 Dwight Way, Second Floor
Berkeley, California U.S.A.

+1 (510) 665-1600
info@bdti.com
http://www.bdti.com
Outline

- DSP applications
- Digital filtering as a motivating problem
- The first generation of DSPs, with an example
- Comparison of DSP processors to general-purpose processors
- DSP evolution continues... later-generation DSPs and alternatives
- Conclusions
DSP is a key enabling technology for many types of electronic products.

DSP-intensive tasks are the performance bottleneck in many computer applications today.

Computational demands of DSP-intensive tasks are increasing very rapidly.

In many embedded applications, general-purpose microprocessors are not competitive with DSP-oriented processors today.

1998 market for DSP processors: US $3.2 billion
Example DSP Applications

- Digital cell phones
- Automated inspection
- Vehicle collision avoidance
- Voice-over-Internet
- Motor control
- Consumer audio
- Voice mail
- Navigation equipment
- Audio production
- Videoconferencing
- Pagers
- Music synthesis, effects
- Satellite communications
- Seismic analysis
- Secure communications
- Tapeless answering machines
- Sonar
- Cordless phones
- Digital cameras
- Modems (POTS, ISDN, cable, ...)
- Noise cancellation
- Medical ultrasound
- Patient monitoring
- Radar

And more to come...
This is Your Palm Pilot
This is Your Palm Pilot... On DSP

Hello, Dave. You have a meeting in 10 minutes.
Today's DSP "Killer Apps"

- In terms of dollar volume, the biggest markets for DSP processors today include:
 - Digital cellular telephony
 - Pagers and other wireless systems
 - Modems
 - Disk drive servo control

- Most demand good performance
- All demand low cost
- Many demand high energy efficiency

- Trends are towards better support for these (and similar) major applications.
DSP Tasks for Microprocessors

- Speech and audio compression
- Filtering
- Modulation and demodulation
- Error correction coding and decoding
- Servo control
- Audio processing (e.g., surround-sound, noise reduction, equalization, sample rate conversion, echo cancellation)
- Signaling (e.g., DTMF)
- Speech recognition
- Signal synthesis (e.g., music, speech)
What Do DSP Processors Need to Do Well?

Most DSP tasks require:
- Repetitive numeric calculations
- Attention to numeric fidelity
 - Fixed- vs floating-point
 - Standards
- High memory bandwidth
 - Streaming data
- Real-time processing

Processors must perform these tasks efficiently while minimizing:
- Cost
- Power
- Memory use
- Development time
A Motivating Example: FIR Filtering

Each tap (M+1 taps total) nominally requires:
- Two data fetches
- Multiply
- Accumulate
- Memory write-back to update delay line
FIR Filter on Von Neumann Architecture

```
loop:
  mov    *r0,x0
  mov    *r1,y0
  npy    x0,y0,a
  add    a,b
  mov    y0,*r2
  inc    r0
  inc    r1
  inc    r2
  dec    ctr
  tst    ctr
  jnz    loop
```

(Computes one tap per loop iteration)

Problems:
- Memory bandwidth bottleneck
- Control code and addressing overhead
- Possibly slow multiply
First-Generation DSP (1982): Texas Instruments TMS32010

- 16-bit fixed-point
- Harvard architecture
- Accumulator
- Specialized instruction set
- 390 ns MAC time (228 ns today)
TMS32010 Filter Code

LT X4 ;Load T with x(n-4)
MPY H4 ;P=H4*X4
LTD X3 ;Load T with x(n-3);x(n-4)= x(n-3)
 ;Acc = Acc + P
MPY H3 ;P=H3*X3

LTD X2
MPY H2

etc.

◆ Two instructions per tap, but requires unrolling
Features Common to Most DSP Processors

◆ Data path configured for DSP
◆ Specialized instruction set
◆ Multiple memory banks and buses
◆ Specialized addressing modes
◆ Specialized execution control
◆ Specialized peripherals for DSP
Data Path Comparison

DSP Processor
- Specialized hardware performs all key arithmetic operations in 1 cycle
- Hardware support for managing numeric fidelity:
 - Shifters
 - Guard bits
 - Saturation

General-Purpose Processor
- Multiplies often take >1 cycle
- Shifts often take >1 cycle
- Other operations (e.g., saturation, rounding) typically take multiple cycles
Instruction Set Comparison

DSP Processor
- Specialized, complex instructions
- Multiple operations per instruction

```plaintext
mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0
```

General-Purpose Processor
- General-purpose instructions
- Typically only one operation per instruction

```plaintext
mov *r0,x0
mov *r1,y0
mpy x0,y0,a
add a,b
mov y0,*r2
inc r0
inc r1
```
Memory Architecture Comparison

DSP Processor
- Harvard architecture
- 2-4 memory accesses per cycle
- No caches--on-chip SRAM

General-Purpose Processor
- Von Neumann architecture
- Typically 1 access per cycle
- May use caches
Addressing Comparison

DSP Processor

- Dedicated address-generation units
- Specialized addressing modes
 - Autoincrement
 - Modulo (circular)
 - Bit-reversed (for FFT)
- Good immediate data support

General-Purpose Processor

- Often, no separate address-generation units
- General-purpose addressing modes
Execution Control

- Hardware support for fast looping
- "Fast interrupts" for I/O handling
- Real-time debugging support
Specialized Peripherals for DSP

- Synchronous serial ports
- Parallel ports
- Timers
- On-chip A/D, D/A converters
- Host ports
- Bit I/O ports
- On-chip DMA controller
- Clock generators

- On-chip peripherals often designed for "background" operation, even when core is powered down.
Summary of DSP Attributes

- **Computational demands**
 - Multiple parallel execution units, hardware acceleration of common DSP functions

- **Numeric fidelity**
 - Accumulator registers, guard bits, saturation hardware

- **High memory bandwidth**
 - Harvard architecture, support for parallel moves

- **Predictable data access patterns**
 - Specialized addressing modes, e.g., modulo addressing, bit-reversed addressing
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Feature Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution-time locality</td>
<td>Hardware-assisted zero-overhead looping, specialized instruction caches, streamlined interrupt handling</td>
</tr>
<tr>
<td>MAC-centricity</td>
<td>Single-cycle multiplier(s) or MAC unit(s), MAC instruction</td>
</tr>
<tr>
<td>Streaming data</td>
<td>No data cache; DMA</td>
</tr>
<tr>
<td>Real-time constraints</td>
<td>Few dynamic features, on-chip RAM instead of cache</td>
</tr>
<tr>
<td>Standards</td>
<td>Rounding, saturation</td>
</tr>
</tbody>
</table>
Second-Generation DSPs (1987): Motorola DSP56001

- 24-bit data, instructions
- 3 memory spaces (X, Y, P)
- Single- and multi-instruction hardware loops
- Modulo addressing
- 75 ns MAC (21 ns today)

```
move    #Xaddr,r0
move    #Haddr,r4
rep     #Ntaps
mac     x0,y0,a  x: (r0)+,x0  y: (r4)+,y0
```

- Other 2nd-generation processors: Analog Devices ADSP-2100, TI TMS320C50
Low-cost GPP vs Low-Cost DSP

Speed (BDTImarks™)

- ARM7TDMI: 80 MIPS (7)
- TM S320C50: 50 MIPS (10)

Note that MIPS ≠ Performance!
Third Generation (1995): Ex: Motorola DSP56301, TI TMS320C541

- Enhanced conventional DSP architectures
- 3.0 or 3.3 volts
- More on-chip memory
- Application-specific function units in data path or as co-processors
- More sophisticated debugging and application development tools
- DSP cores (Pine, Oak from DSP Group, cDSP from TI)
- 20 ns MAC (10 ns today)
- Architectural innovation mostly limited to adding application-specific function units and miscellaneous minor refinements
- Also, multiple processors on a chip (TI TMS320C80, Motorola MC68356)
Ex: TMS320C6201/6701, ZSP16401, MMX Pentium

Today's top DSP performers adopt architectures far different from conventional DSP processor designs:

- **SIMD**
 - Single instruction, multiple data
 (e.g., MMX, AltiVec, MDMX)

- **VLIW**
 - "Very long instruction word"
 - Compile-time scheduling and parallel execution of multiple simple instructions (e.g., TMS320C6201/C6701)

- **Superscalar**
 - Run-time scheduling and execution of >1 (usually 2-4) instructions per cycle (e.g., Pentium, PowerPC, ZSP164xx)

- **User-defined instructions**
Fourth Generation Architectures

- Blazing clock speeds and superscalar architectures give some general-purpose processors, such as the PowerPC 604e, extremely good floating-point DSP performance despite a lack of many DSP features
- Adding SIMD extensions, such as MMX, MDMX, and AltiVec, yields strong fixed-point performance on GPPs
 - But strong DSP tools for general-purpose processors are lacking

- VLIW-like and superscalar DSP architectures achieve top performance via high parallelism and increased clock speeds
- 3 ns MAC throughput... but expensive, power-hungry
Processor DSP Speed: BDTImarks

- 1st gen: 1982, TMS32010, 5 MIPS
- 2nd gen: 1987, DSP56001, 13 MIPS
- 3rd gen: 1995, TMS320C54x, 50 MIPS
- 4th gen: 1998, TMS320C6201, 200 MHz, ZSP16401, 200 MHz

MMX Pentium 233 MHz
General-Purpose Processors
Add DSP

"Go where the cycles are..."

General-purpose processors are increasingly adding DSP capabilities via a variety of mechanisms:

- Add SIMD capabilities
- Integrate a fixed-point DSP processor-like data path and related resources with an existing μC/μP core (e.g., Hitachi SH-DSP)
- Add a DSP co-processor to an existing μC/μP core (e.g., ARM Piccolo)
- Create an all-new, hybrid architecture (e.g., Siemens TriCore)
DSP processor performance has increased by a factor of about 150x over the past 15 years (~40% per year).

Processor architectures for DSP will be increasingly specialized for applications, especially for communications applications.

General-purpose processors will continue to add DSP capabilities; GPP and DSP family trees will mix.

Users of processors for DSP will have an expanding array of choices.

Selecting processors requires careful, application-specific analysis.
For More Information

http://www.bdti.com
Collection of BDTI's papers on DSP processors, tools, and benchmarking

http://www.eg3.com/dsp
Links to other good DSP sites

comp.dsp
Usenet group

Microprocessor Report
For info on newer DSPs

DSP Processor Fundamentals,
BDTI
Textbook on DSP processors

Or, join BDTI...We're Hiring!