DSP Software Optimization

Techniques for the Latest Processors

Berkeley Design Technology, Inc.
2107 Dwight Way, Second Floor
Berkeley, California U.S.A.

+1 (510) 665-1600
info@BDTIL.com
http://www.BDTI.com ‘BDT
|

Copyright @ 19938-1999 Berkeley Design Technology, [0c.

Optimization

Definition.: A procedure used in the design of a system
fo maximize (or minimize) some performance index.

4 Possible performance indices:

e Execution speed
e Memory usage (code size and data size)
e Power corsumption

2 19498-1999 Berkeley Design Technology, [nc.

Why Optimize?

® DSP applications are extremely computationally
demanding, but often require low power, low memory use

¢ Optimization yields a competitive advantage
e Execution speed
» Can use g slower, and less expersive, processor
» Allows upgraded functionality using the same processor
« More functionality, e.g., more charnels

e Memory usage
« Memory usage confributes to system cost

e Power consumption
o [mproved battery life or reduced power supply size

3 19498-1999 Berkeley Design Technology, [nc.

The Light and Dark Side

of Optimization

% Speed-optimized code
e May consume less energy
e But often sacrifices memory

4 Memory-optimized code
e May reduce memory accesses and hence energy consumption
e But generally slows down code

Power-optimized code
e Can mean optimizing for speed

e But may just as well slow down code

Performance advantage vs. development time

4 19498-1999 Berkeley Design Technology, [nc. ‘BDTI

Optimization for Modern Processors

Characteristics of modern processors

e Modern processors use increased parallelism to get high
performance on DSP tasks

e Several different paths to achieve this goal:

o Allowing mary parallel operations o be encoded in each instruction

o Iszuing multiple instruct ons per cycle--superscalar, YLIW {wery long
instruction word) architechures

o Adding SIMD (singe instruction, multiple data) capabilities

e Given the current architectural landscape, what optimization
techniques are effective?

a 19498-1999 Berkeley Design Technology, [nc. ‘BDTI

Where to Optimize?

& The 80/20 rule

e 20% of the software uses 80% of the processing time
e and 80% of the software uses 20% of the processing time

¢ DSP algorithm software spends most of its time in
loops

e This is where optimization for speed and power is most
valuable

¢ Control software takes up the bulk of the program
memory, but only a fraction of the processing time

e Control software is the best candidate for memory optimization

] 19498-1999 Berkeley Design Technology, [nc. ‘BDTI

Application Profiling

AC-3 Execution Time Frofile

Which modules take the longest time?
e They're the best candidates for speed optimization

23%

390/0 BIDCT

BWindow
M Denorm
B oOther

11%

23%

¥ 19498-1999 Berkeley Design Technology, [nc.

Application Profiling (cont’'d)

4 Similarly. ..
e Which modules take the most memory?

» Theyre the best candidates for memaory optimization
e Which modules are the most power -consuming?

» Thev're the best cardidates for power consumption optimization

» Generally the same modales that take most time use the most
poweEr

In a system with both a microcontroller and a DSP
processor, a task may execute on either processor

e Depending on which is faster, takes less memory, or less power

1998-1999 Berkeley Design Technology, [nc. ‘BDTI

High-Level Language Optimizations

Or, "be smarter than the compiler”

BT

Copyright @ 19938-1999 Berkeley Design Technology, [0c.

Compiler Shortcomings

¢ Compilers typically don't generate sufficiently
optimized DSP software
e High-level language is sequential, but processors often arent

e Some DSP features aren't supported in the most common
high-level languages

e Memory layout is important, but compilers don't know that

e Specialized addressing modes arent supported

e The best optimizer is still the human mind

® The programmer often must hand-optimize software
e But then there’s the development time...

BT

10 19498-1999 Berkeley Design Technology, [nc.

High-Level Language Optimizations

11

Simplify complex statements
Simplify pointer arithmetic

% Arrange data in memory banks
Help the compiler

1998-1999 Berkeley Design Technology, [nc.

12

Simplify Complex Statements

One loop with complex conditions
for (A = 1; ((A-B < 4) && (& < 10)):; A++)

L. L
® becomes two loops with simple conditions

/% 1f you know that B+4 < 10 */
for (A = 1; A < B+4; At++)

.
for (; A < 10; &A+4)

f « .« . 1}

1998-1999 Berkeley Design Technology, [nc.

Simplify Pointers

13

DSPs are very good at some kinds of pointer
arithmetic...

4 But not very good at other kinds

e Vectorize matrix operations from forms of Ali][j] to Blk] or
*B++

e Avoid hierarchical pointers
e Avoid pointer swapping

4 GPPs usually handle pointers better than DSPs
e But it generally pays to optimize pointers

1998-1999 Berkeley Design Technology, [nc.

Arrange Data in Memory Banks

¢ Virtually all DSP processors use multiple memory banks

e Statements that require multiple data accesses per arithmetic
operation can take advantage of multiple banks

e Some GPPs also have multiple memory banks
sum += A[1] * B[1]

Bank 1 Bank 1

i iy

B

Bank 2 Bank 2
B

14 19498-1999 Berkeley Design Technology, [nc.

Help the Compiler

14

Eliminate unnecessary function call overhead of small,
often-called functions

% Rewrite expressions to help the compiler

e The original code is
fori{i=0; 1<MN; i1++) sum += A[1] * B[1]:

e But the compiler may generate faster code if the code is
pta = A; pLCE = B
for (1=0; 1<MN; 1++) =um += *ptA++ * *ptB++;

1998-1999 Berkeley Design Technology, [nc.

Loop Optimization

Or, “yvour errors will be repeated in your next iteration”

BT

16 Copyright @ 19938-1999 Berkeley Design Technology, [0c.

A Recipe for Loop Optimization

1. Identify the best approach to implementing
the algorithm:

4 Profile the loop to identify bottlenecks.
For example, are bottlenecks caused by

e a particular execution unit?
e accesses to memory?

4 Re-structure the algorithm to alleviate these
bottlenecks (“algorithmic transformation™)

2. Implement this approach efficiently
using scheduling techniques

17 19498-1999 Berkeley Design Technology, [nc.

Profiling an FIR Filter on a DSP

ill—r]j—p]j---é—h-

Bn g

18

—p® —>®+uut

Requirements: Resources:

* multiply * multiplier

* add * ALU

* 2 loads * 2 AGUSs, 2 buses
* 1 store

1998-1999 Berkeley Design Technology, [nc.

Four Categories of Algorithmic

Transformations, With Examples

14

Unrolling across outer loops
Combining loops

Identifying operations that can be moved
outside of a loop

Rearranging data in memory

Examples we present here are not exhaustive, just illustrative
of the concepts of each type of algorithmic transformation

BT

1998-1999 Berkeley Design Technology, [nc.

1. Unrolling Across Outer Loops

Useful in algorithms that use nested loops

The goal: combine work from consecutive iterations
of outer loop in inner loop

¢ Allows better re-use of intermediate results

20 19498-1999 Berkeley Design Technology, [nc.

Block FIR Filter using "Zipping "

Dot Product |—» one output

Dot Product |— one output

21

]
]
LD RO, ¥,
LD R1,C,
Rz = RO*R1l, LD RD"E(—J_)
LD R1,C,
R2 = R2+R0O*R1, LD RO, ¥, ,,
LD R1,C,
RZ = RZ+RO*R1, LD RO, _
LD R1,
RZ = RZ+RO0*R1
;v0 in RZ

21

Two dot products,
without r e-fetching
data

—
two outputs

LD RO, %, ®

LD R1,C,

RZ = RO*R1, LD RO, ¥,

R3 = RO*R1, LD RI1,C,

RZ = R2+R0O*R1, LD RO, ¥,
R3 = R3I+RO*R1, LD RI1,C,
RZ = RZ+RO*R1, LD RO,X,_,,
R3 = R3+RO*R1, LD RI1,C,
RZ = R2Z+RO*R1, LD RO, ¥, s
E3 = R3+R0*E1L

; vl in R2, w0 in R3
1998-1999 Berkeley Design Technology, [nc.

Radix-2 vs Radix-4

FFT Butterfly Structures

Stage 1 Stage 2
A A

<0 & . 4 X©
x(2) X()
x(1) X(2)
x(3) X3

Radix-2:

Each butterfly requires:
8 Memory accesses
4 Multiplications
6 Additions

Radix-4:

Each butterfly requires:
16 Memory accesses (4 /R-2 bily)
12 Multiplications (3 /R-2 bily)
22 Additions (5.5 /R-2 bily)

1998-1999 Berkeley Design Technology, [nc. ‘BDTI

2. Combining Loops

23

¢ Goal: Avoid spending overhead on two separate loops

Identify operations that are repeated in both loops

e Combine the two loops so that those operations are only
performed once

& Allows better re-use of intermediate results

1998-1999 Berkeley Design Technology, [nc.

LMS Adaptive FIR Filter

Loop: 2 loads per iteration re-or d er, Loop: 2 loads per iteration

Perform dot product, combine Update one coefficient
ne coefficient at a time ﬂpEI‘ﬂtiﬂl’lS

\d

v

Perform one

mukiplication
Calculate error without reloading
+ coeff from memory

Loop: 2 loads per iteration

\

Update all coefficients,
ne coefficient at a time

Calculate error

(for next invocation)

24 19498-1999 Berkeley Design Technology, [nc.

BT

3. Moving Operations Outside Loop

26

® Goal: Use a prioriy knowledge of the algorithm to
avoid repeated operations

e Identify calculations that produce constant results
over the duration of the loop

4 Move redundant work outside the loop

1998-1999 Berkeley Design Technology, [nc.

Circular Buffering for FIR Filter

% No support for modulo addressing. How to avoid
checking for wraparound at each iteration?

e Find wraparound point outside the loop since it is constant
over the duration of the loop

e Split the loop into two loops that dont wrap

Loop 1 processes k samples Loop 2 pracesses n-k samples
b, Bk b Bk
Multiplms Multiply-accumul ates
Xy X ;,;:j xlk_l X1, ..xln Xener X,
Pointer to Llst Sample Pointer to Lfast Sample

26 19498-1999 Berkeley Design Technology, [nc.

Radix-2 FFT

1st Stage
Twiddle factors for
1st stage are 1 and O; S5 ERTTR
can eliminate
Stage loop multiplications in
_ 1st stage.

Subsequent Stages

Stage loop

2T 19498-1999 Berkeley Design Technology, [nc.

4. Arranging Data in Memory

¢ Goals:

e Simplify addressing to save cycles on address calculations
e Enable use of SIMD or other parallel operations

28 19498-1999 Berkeley Design Technology, [nc.

IIR Filter Bigquad Section

24

Store two copies of
filter state variables

MMO

MM1

CoSp+ 58 | Gy + G35

1998-1999 Berkeley Design Technology, [nc.

Radix-2 FFT

Arrange twiddle factors
in bit-reversed order

W [0] W [0]

W [1] W [128]

W [2] W[64]

W [3] W [192]

W [4] W [32]
" —

30 19498-1999 Berkeley Design Technology, [nc.

Scheduling Techniques

Or, "time is a measure of what isr7fdone”

BT

31 Copyright @ 19938-1999 Berkeley Design Technology, [0c.

Scheduling Techniques

Now that you've found the best general approach for the
algorithm, you need to create an efficient implementation.

The programmer or compiler must schedule operations
to take full advantage of the processor's parallelism. How?

¢ Software pipelining

4 Loop unrolling

32 19498-1999 Berkeley Design Technology, [nc.

Software Pipelining

a3

What is software pipelining?

Execution of operations from different iterations of
the (non-software-pipelined) loop in parallel
e In each loop iteration, use intermediate results generated by
the previous iteration and perform operations whose
intermediate results will be used in the next iteration
The deeper the hardware pipeline, the more likely it
is that software pipelining will be necessary

1998-1999 Berkeley Design Technology, [nc. ‘BDTI

Software Pipelining

ad

4 Main advantage

e Increases performance by making use of instruction slots that
would otherwise be wasted waiting for results

¢ Main disadvantage

e Software pipelining makes programs more complicated, harder
to read and maintain

1998-1999 Berkeley Design Technology, [nc.

FIR Filter on
No SW Pipelining:

6.5 Cycles/Tap
11 instructions

LooPp:
LW .D2 *B4d4++4+,BZ ; load coef(0) & coef (1)
| | TDW .D1 *&4a7-——, A- ; load state (0) & state (1)
NOP 4 ; walt for leoads to finish
MEYHL .M1¥ AZ,BZ,A3 ; PO{1)=coef (Z1)*state{Z1)
| | MPYLH .MZ2¥ AZ,B2,B7 ; Pl{i) =coef(2i+li*=tate (2141)
| | &D0D .82 -1,E0,EQ ; Dec loop counter
NOP 1 ; walt for multiplies to finish
ADD L1 A0, A3, AD ; Sum0 (1) += PO(1-2)
| | Aa0D .LZ B1l,EB7,EB1 ; Suml (1) += PLl(i-2)
| | [EOD] B .51 LOOP ; Cond. Branch te LOOP
NOP 5 ; walt for branch toe take effect

; Loop ends here

DT

35 19498-1999 Berkeley Design Technology, [nc.

[Mot shown: Z4 instructions to

FIR Filter on C62xx o

0.5 Cycles/Tap
33 instructions

prime plpeline, set up registers before loop start]

LOooOP:
ADD L1 AD,AS, AD ; Sumb (1) += PO(1-2)
| |ADD .LZ B1,B7,B1 ; Suml (1) += P1l(i-2)
| |MEYHL .MI1¥ AZ,BZ, A3 ; PO(1) = coef (21)*=tate (21)
| | MEYLH .MZX AZ, BZ, BY ; Plii) = coef(2i+l)*state (Z214+1)
| |LDW .DZ *Ed++,BZ ; load coef (214100 & coef(Z21+11)
| |LDW .D1 *A7--,AZ ; load state (214100 & state(21+11)
|| [BO] ADD .52 -1,B0,BO0 ; Cond. dec loop counter
| | [EOD] B .81 LOCOP ; Cond. Branch to LOOP

; LOOP end=s here

[Hot shown: 3 instructions for final calculations]

36 19498-1999 Berkeley Design Technology, [nc. ‘BDT

Loop Unrolling

a7

Repetition of loop-body instructions several times
within a single loop iteration

¢ Main advantages:
e Reduces relative loop overhead

e May facilitate software pipelining by enabling operations from
different loop iterations to execute in parallel

¢ Main disadvantages:

e Increased memory usage
e Loss of generality

1998-1999 Berkeley Design Technology, [nc.

Vector Addition on TMS320C2700

¢ TMS320C2700 has high loop overhead

e No multi-instruction hardware looping
e Branches are costly

loop: mov ah, FarZ++ ; load element al
add ah, *ar3++ ;o add element k0O
mow *ardd+,ah i store sum al+bk0

; repeat the loop body instructions

mow ah, *arZ++ ; load element al
add ah, *Far3++ ; add element bl
mov *Fard4+,ah ; store sum al+bkl
banz loop,arl-- ; branch to loop

38 19498-1999 Berkeley Design Technology, [nc. ‘BDTI

Dot Product on TigerSHARC

No unrolling,
no SW pipelining:

0.5 Cycles/Tap
loop:
¥R1:0 = Q[j10+=2]; ¥YR1:0 = Q[k0+=21;; // lecad &
samples
HRE3:2 = Q[J0+4=2]; ¥YR3:2 = Q[k0+=2];; Jd load 8 coeffs

// one cycle stall happens here

if NLCOE, jump loop; MR3:0 += R1:0*RE3:2;; // loop, 8 MACS

BT

349 19498-1999 Berkeley Design Technology, [nc.

Dot Product on TigerSHARC

With unrolling,
SW pipelining:
0.125 Cycles/Tap

loop:
F4 load 8 coeffs, 8 sample=s, do 8 MACS
TR7:4 = Q[j0+=4]; ¥R1l1:58 = Q[kO+=4]; MR3I:0 += RV:E * R11:10;;

A4 load 8 coeffs, 8 sawple=s, do 8 MACS
ZR7:4 = Q[j0+=4]; Xr1l1:8 = oQ[kO0O+=4]; MR3I:0 += R13:1Z * R17:16;;

A4 load 8 coeffs, 8 sawples, do 8 MACS
YR15:12 = Q[j0+=4]; ¥R10:16 = Q[kO0+=4]; MRE3:0 += R15:14 + R10:18;;

/4 branch, load 8 coeffs, 8 samples, do 8 MACS

it NLCOE,jwnp loop;
XR15:12 = Q[j0+=4]; ZR19:16 = Q[kO+=4]; MR3:0 += E5:4 * ERE9:8;;

BDT;

40 19498-1999 Berkeley Design Technology, [nc.

FIR Filter on MMX Pentium

No Unrolling,
no SW pipelining:
1.75 Cycles/Tap

loopl:
movg mml, [esi] ; load four samples
praad did mmld, COEFaddrl[edi] ; 4 multiplie=s, 2 adds

/¥ two cvele stall happens here */

raddd mm7, mm0 ;o acoumulate intermed results
add e=di, 8 ; update coefficient index
add esi, 8 ; update delay line polnter
dec ecx ; decrement loop count

Jnz loopl

41 19498-1999 Berkeley Design Technology, [nc.

42

FIR on MMX Pentium

loopl:
proaddwd o0,
paddd mm? ,
proaddwd mml,
paddd mm? ,
00V o mm ,
Mo 3 ,
paddd 7,
proaddwd
paddd mm? ,
proaddwd w3,
{lu i mml ,
oilutde rral,
add edi,
add e=2i,
dec BCx

nz loopl

COEFaddr [edi]
rornd

COEFaddr [edi+h]
rornd

[esi+lh]
[e=it+Zd]

roral)

COEFaddr [edi+l6]
rornl

COEFaddr [edi+d 4]
[e=i+di]
[esi+d0]]

32

32

1998-1999 Berkeley Design Technology, [nc.

With Unrolling &
SW Pipelining:
0.625 Cycles/Tap

4 multiplies, 2 adds
accumilate intermed results
4 multiplies, 2 adds

accumilate intermed results
load four new samples

load four new samples

accumilate intermwmed results

4 multiplies, 2 adds
accumilate intermed result
4 multiplies, 2 adds

load four new samples
load four new samples
update coefficient index
update delay line pointer

decrement loop count

DT

Don’t Follow the Rules

Or, "rules are made to be broken”

BT

43 Copyright @ 19938-1999 Berkeley Design Technology, [0c.

Specialized Instructions

44

4 Examples (not exhaustive):

e ADSP-2116x has specialized instruction for FFT
« Cne multiplication, and sum and difference of two operands
e TMS320C54x has several specialized instructions
o |LMS, symmetrical FIR filter, polvnomial evaluation, ...
e G4 includes instruction useful for LMS
« Eight multiplications, eight additions, eight roundings with
single-cvele throughput
e DSP16xxx has application-specific operations

» Extended-precision multiplication specialized for enhanced full-
rate (G5l

1998-1999 Berkeley Design Technology, [nc. ‘BDTI

Non-Conventional Use

of Execution Units

45

¢ 15-54 convolutional encoder bit-interleaving on Pentium

e Pentium can't do single-cycle
rel ecH, 1 ; rotate, insert prev carry bit

=hl eax, 1 ; 2hift, generate new carry bit
e But it can do single-cycle

rol ecH, 1 ; rotate, insert prev carry bit

add 2a¥, Sax ; 2hift, generate new carry bit

4 Vector maximum search on the ZSP Z5P164xx

loop: ldu rlh, rl4d,1 ; new la-bit wvalus 1in
; rl5, addres=z 1in rl4d

max.e rd,rl4d ; 32-bit max {r5,r4d:,
;irlh, rl1d! includes address

agnl loop ; next walue

1998-1999 Berkeley Design Technology, [nc. ‘BDTI

Other Tweaks

46

4 Complex multiplication (a+jb)*{c+jd)
e Doesnt need to be 4 rmultiplications, 2 additions,
e but can be 3 muiltiplications, 5 additions (why?)
e and a complex dot product can be four real, partial dot
products (why?)
¢ Look-up tables for FFT bit-reversal or Hamming
distance

e Often allows significant speed optimization, but can be costly
in terms of memory usage

4 ... and much, much more!

1998-1999 Berkeley Design Technology, [nc. ‘BDTI

If Algorithmic Transformations

Don’t Help...

47

4 Choose a different algornthm
e A lower-order IIR filter may be used instead of a higher-order
FIR filter

e Gradient search (LMS) adaptive filter algorithm is less
compute intensive than recursive least squares (RLS)
algorithm

e Different algorithms may cause other problems

« For example, an IR filter ism't unconditionally stable

4 Trade quality of sound or video for faster processing

e Product may become less expensive...
e but with poorer quality

1998-1999 Berkeley Design Technology, [nc. ‘BDTI

® As architectures diversify and become more
complicated, optimization gets harder

® Since compilers often do not generate sufficiently
optimized code, it is incumbent upon programmers to
optimize critical code by hand, usually in assembly

Optimization requires strong knowledge of the
processaor, the algorithm, and the application

¢ Be aware of trade-offs between speed, memory
usage, and power consumption

43 19498-1999 Berkeley Design Technology, [nc.

44

For More Information...

® These slides will be available at BDTI's web site:
htip:/ /www.bdti.com

& DSF FProcessor Fundamenials (BDTI, 1996), a
texthook on DSP processors

1998-1999 Berkeley Design Technology, [nc.

	img001
	img002
	img003
	img004
	img005
	img006
	img007
	img008
	img009
	img010
	img011
	img012
	img013
	img014
	img015
	img016
	img017
	img018
	img019
	img020
	img021
	img022
	img023
	img024
	img025
	img026
	img027
	img028
	img029
	img030
	img031
	img032
	img033
	img034
	img035
	img036
	img037
	img038
	img039
	img040
	img041
	img042
	img043
	img044
	img045
	img046
	img047
	img048
	img049

