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Optimization

Definition.: A procedure used in the design of a system
fo maximize (or minimize) some performance index.

4 Possible performance indices:

e Execution speed
e Memory usage (code size and data size)
e Power corsumption
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Why Optimize?

® DSP applications are extremely computationally
demanding, but often require low power, low memory use

¢ Optimization yields a competitive advantage
e Execution speed
» Can use g slower, and less expersive, processor
» Allows upgraded functionality using the same processor
« More functionality, e.g., more charnels

e Memory usage
« Memory usage confributes to system cost

e Power consumption
o [mproved battery life or reduced power supply size
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The Light and Dark Side

of Optimization

% Speed-optimized code
e May consume less energy
e But often sacrifices memory

4 Memory-optimized code
e May reduce memory accesses and hence energy consumption
e But generally slows down code

# Power-optimized code
e Can mean optimizing for speed

e But may just as well slow down code

# Performance advantage vs. development time
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Optimization for Modern Processors

# Characteristics of modern processors

e Modern processors use increased parallelism to get high
performance on DSP tasks

e Several different paths to achieve this goal:

o Allowing mary parallel operations o be encoded in each instruction

o Iszuing multiple instruct ons per cycle--superscalar, YLIW {wery long
instruction word) architechures

o Adding SIMD (singe instruction, multiple data) capabilities

e Given the current architectural landscape, what optimization
techniques are effective?
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Where to Optimize?

& The 80/20 rule

e 20% of the software uses 80% of the processing time
e and 80% of the software uses 20% of the processing time

¢ DSP algorithm software spends most of its time in
loops

e This is where optimization for speed and power is most
valuable

¢ Control software takes up the bulk of the program
memory, but only a fraction of the processing time

e Control software is the best candidate for memory optimization
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Application Profiling

AC-3 Execution Time Frofile

# Which modules take the longest time?
e They're the best candidates for speed optimization
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Application Profiling (cont’'d)

4 Similarly. ..
e Which modules take the most memory?

» Theyre the best candidates for memaory optimization
e Which modules are the most power -consuming?

» Thev're the best cardidates for power consumption optimization

» Generally the same modales that take most time use the most
poweEr

# In a system with both a microcontroller and a DSP
processor, a task may execute on either processor

e Depending on which is faster, takes less memory, or less power
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High-Level Language Optimizations

Or, "be smarter than the compiler”

BT
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Compiler Shortcomings

¢ Compilers typically don't generate sufficiently
optimized DSP software
e High-level language is sequential, but processors often arent

e Some DSP features aren't supported in the most common
high-level languages

e Memory layout is important, but compilers don't know that

e Specialized addressing modes arent supported

e The best optimizer is still the human mind

® The programmer often must hand-optimize software
e But then there’s the development time...

BT
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High-Level Language Optimizations

11

# Simplify complex statements
# Simplify pointer arithmetic

% Arrange data in memory banks
# Help the compiler
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12

Simplify Complex Statements

# One loop with complex conditions
for (A = 1; ((A-B < 4) && (& < 10)):; A++)

L. L
® becomes two loops with simple conditions

/% 1f you know that B+4 < 10 */
for (A = 1; A < B+4; At++)

.
for (; A < 10; &A+4)

f « .« . 1}
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Simplify Pointers

13

# DSPs are very good at some kinds of pointer
arithmetic...

4 But not very good at other kinds

e Vectorize matrix operations from forms of Ali][j] to Blk] or
*B++

e Avoid hierarchical pointers
e Avoid pointer swapping

4 GPPs usually handle pointers better than DSPs
e But it generally pays to optimize pointers
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Arrange Data in Memory Banks

¢ Virtually all DSP processors use multiple memory banks

e Statements that require multiple data accesses per arithmetic
operation can take advantage of multiple banks

e Some GPPs also have multiple memory banks
sum += A[1] * B[1]

Bank 1 Bank 1

i iy

B

Bank 2 Bank 2
B
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Help the Compiler

14

# Eliminate unnecessary function call overhead of small,
often-called functions

% Rewrite expressions to help the compiler

e The original code is
fori{i=0; 1<MN; i1++) sum += A[1] * B[1]:

e But the compiler may generate faster code if the code is
pta = A; pLCE = B
for (1=0; 1<MN; 1++) =um += *ptA++ * *ptB++;
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Loop Optimization

Or, “yvour errors will be repeated in your next iteration”

BT
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A Recipe for Loop Optimization

1. Identify the best approach to implementing
the algorithm:

4 Profile the loop to identify bottlenecks.
For example, are bottlenecks caused by

e a particular execution unit?
e accesses to memory?

4 Re-structure the algorithm to alleviate these
bottlenecks (“algorithmic transformation™)

2. Implement this approach efficiently
using scheduling techniques
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Profiling an FIR Filter on a DSP

ill—r]j—p]j---é—h-

Bn g

18
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Requirements: Resources:

* multiply * multiplier

* add * ALU

* 2 loads * 2 AGUSs, 2 buses
* 1 store
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Four Categories of Algorithmic

Transformations, With Examples

14

Unrolling across outer loops
Combining loops

Identifying operations that can be moved
outside of a loop

Rearranging data in memory

Examples we present here are not exhaustive, just illustrative
of the concepts of each type of algorithmic transformation

BT
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1. Unrolling Across Outer Loops

# Useful in algorithms that use nested loops

# The goal: combine work from consecutive iterations
of outer loop in inner loop

¢ Allows better re-use of intermediate results
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Block FIR Filter using "Zipping "

Dot Product |—» one output

Dot Product |— one output

21

]
]
LD RO, ¥,
LD R1,C,
Rz = RO*R1l, LD RD"E(—J_)
LD R1,C,
R2 = R2+R0O*R1, LD RO, ¥, ,,
LD R1,C,
RZ = RZ+RO*R1, LD RO, _
LD R1,
RZ = RZ+RO0*R1
;v0 in RZ

21

Two dot products,
without r e-fetching
data

—
two outputs

LD RO, %, ®

LD R1,C,

RZ = RO*R1, LD RO, ¥,

R3 = RO*R1, LD RI1,C,

RZ = R2+R0O*R1, LD RO, ¥,
R3 = R3I+RO*R1, LD RI1,C,
RZ = RZ+RO*R1, LD RO,X,_,,
R3 = R3+RO*R1, LD RI1,C,
RZ = R2Z+RO*R1, LD RO, ¥, s
E3 = R3+R0*E1L

; vl in R2, w0 in R3
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Radix-2 vs Radix-4

FFT Butterfly Structures

Stage 1 Stage 2
A A

<0 & . 4  X©
x(2) X()
x(1) X(2)
x(3) X3

Radix-2:

Each butterfly requires:
8 Memory accesses
4 Multiplications
6 Additions

Radix-4:

Each butterfly requires:
16 Memory accesses (4 /R-2 bily)
12 Multiplications (3 /R-2 bily)
22 Additions (5.5 /R-2 bily)
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2. Combining Loops

23

¢ Goal: Avoid spending overhead on two separate loops

# Identify operations that are repeated in both loops

e Combine the two loops so that those operations are only
performed once

& Allows better re-use of intermediate results
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LMS Adaptive FIR Filter

Loop: 2 loads per iteration re-or d er, Loop: 2 loads per iteration

Perform dot product, combine Update one coefficient
ne coefficient at a time ﬂpEI‘ﬂtiﬂl’lS

\d

v

Perform one

mukiplication
Calculate error without reloading
+ coeff from memory

Loop: 2 loads per iteration

\

Update all coefficients,
ne coefficient at a time

Calculate error

(for next invocation)
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3. Moving Operations Outside Loop

26

® Goal: Use a prioriy knowledge of the algorithm to
avoid repeated operations

e Identify calculations that produce constant results
over the duration of the loop

4 Move redundant work outside the loop
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Circular Buffering for FIR Filter

% No support for modulo addressing. How to avoid
checking for wraparound at each iteration?

e Find wraparound point outside the loop since it is constant
over the duration of the loop

e Split the loop into two loops that dont wrap

Loop 1 processes k samples Loop 2 pracesses n-k samples
b, Bk b Bk
Multiplms Multiply-accumul ates
Xy X ;,;:j ...... xlk_l X1, ..xln Xener X,
Pointer to Llst Sample Pointer to Lfast Sample
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Radix-2 FFT

1st Stage
Twiddle factors for
1st stage are 1 and O; S5 ERTTR
can eliminate
Stage loop multiplications in
_ 1st stage.

Subsequent Stages

Stage loop
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4. Arranging Data in Memory

¢ Goals:

e Simplify addressing to save cycles on address calculations
e Enable use of SIMD or other parallel operations
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IIR Filter Bigquad Section

24

Store two copies of
filter state variables

MMO

MM1

CoSp+ 58 | Gy + G35
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Radix-2 FFT

Arrange twiddle factors
in bit-reversed order

W [0] W [0]

W [1] W [128]

W [2] W[64]

W [3] W [192]

W [4] W [32]
" —
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Scheduling Techniques

Or, "time is a measure of what isr7fdone”

BT
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Scheduling Techniques

Now that you've found the best general approach for the
algorithm, you need to create an efficient implementation.

The programmer or compiler must schedule operations
to take full advantage of the processor's parallelism. How?

¢ Software pipelining

4 Loop unrolling
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Software Pipelining

a3

What is software pipelining?

# Execution of operations from different iterations of
the (non-software-pipelined) loop in parallel
e In each loop iteration, use intermediate results generated by
the previous iteration and perform operations whose
intermediate results will be used in the next iteration
# The deeper the hardware pipeline, the more likely it
is that software pipelining will be necessary
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Software Pipelining

ad

4 Main advantage

e Increases performance by making use of instruction slots that
would otherwise be wasted waiting for results

¢ Main disadvantage

e Software pipelining makes programs more complicated, harder
to read and maintain
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FIR Filter on
No SW Pipelining:

6.5 Cycles/Tap
11 instructions

LooPp:
LW .D2 *B4d4++4+,BZ ; load coef(0) & coef (1)
| | TDW .D1 *&4a7-——, A- ; load state (0) & state (1)
NOP 4 ; walt for leoads to finish
MEYHL .M1¥ AZ,BZ,A3 ; PO{1)=coef (Z1)*state{Z1)
| | MPYLH .MZ2¥ AZ,B2,B7 ; Pl{i) =coef(2i+li*=tate (2141)
| | &D0D .82 -1,E0,EQ ; Dec loop counter
NOP 1 ; walt for multiplies to finish
ADD L1 A0, A3, AD ; Sum0 (1) += PO(1-2)
| | Aa0D .LZ B1l,EB7,EB1 ; Suml (1) += PLl(i-2)
| | [EOD] B .51 LOOP ; Cond. Branch te LOOP
NOP 5 ; walt for branch toe take effect

; Loop ends here

DT
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[Mot shown: Z4 instructions to

FIR Filter on C62xx o

0.5 Cycles/Tap
33 instructions

prime plpeline, set up registers before loop start]

LOooOP:
ADD L1 AD,AS, AD ; Sumb (1) += PO(1-2)
| |ADD .LZ B1,B7,B1 ; Suml (1) += P1l(i-2)
| |MEYHL .MI1¥ AZ,BZ, A3 ; PO(1) = coef (21)*=tate (21)
| | MEYLH .MZX AZ, BZ, BY ; Plii) = coef(2i+l)*state (Z214+1)
| |LDW .DZ *Ed++,BZ ; load coef (214100 & coef(Z21+11)
| |LDW .D1 *A7--,AZ ; load state (214100 & state(21+11)
|| [BO] ADD .52 -1,B0,BO0 ; Cond. dec loop counter
| | [EOD] B .81 LOCOP ; Cond. Branch to LOOP

; LOOP end=s here

[Hot shown: 3 instructions for final calculations]
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Loop Unrolling

a7

# Repetition of loop-body instructions several times
within a single loop iteration

¢ Main advantages:
e Reduces relative loop overhead

e May facilitate software pipelining by enabling operations from
different loop iterations to execute in parallel

¢ Main disadvantages:

e Increased memory usage
e Loss of generality
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Vector Addition on TMS320C2700

¢ TMS320C2700 has high loop overhead

e No multi-instruction hardware looping
e Branches are costly

loop: mov ah, FarZ++ ; load element al
add ah, *ar3++ ;o add element k0O
mow  *ardd+,ah i store sum al+bk0

; repeat the loop body instructions

mow  ah, *arZ++ ; load element al
add ah, *Far3++ ; add element bl
mov  *Fard4+,ah ; store sum al+bkl
banz loop,arl-- ; branch to loop
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Dot Product on TigerSHARC

No unrolling,
no SW pipelining:

0.5 Cycles/Tap
loop:
¥R1:0 = Q[j10+=2]; ¥YR1:0 = Q[k0+=21;; // lecad &
samples
HRE3:2 = Q[J0+4=2]; ¥YR3:2 = Q[k0+=2];; Jd load 8 coeffs

// one cycle stall happens here

if NLCOE, jump loop; MR3:0 += R1:0*RE3:2;; // loop, 8 MACS

BT
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Dot Product on TigerSHARC

With unrolling,
SW pipelining:
0.125 Cycles/Tap

loop:
F4 load 8 coeffs, 8 sample=s, do 8 MACS
TR7:4 = Q[j0+=4]; ¥R1l1:58 = Q[kO+=4]; MR3I:0 += RV:E * R11:10;;

A4 load 8 coeffs, 8 sawple=s, do 8 MACS
ZR7:4 = Q[j0+=4]; Xr1l1:8 = oQ[kO0O+=4]; MR3I:0 += R13:1Z * R17:16;;

A4 load 8 coeffs, 8 sawples, do 8 MACS
YR15:12 = Q[j0+=4]; ¥R10:16 = Q[kO0+=4]; MRE3:0 += R15:14 + R10:18;;

/4 branch, load 8 coeffs, 8 samples, do 8 MACS

it NLCOE,jwnp loop;
XR15:12 = Q[j0+=4]; ZR19:16 = Q[kO+=4]; MR3:0 += E5:4 * ERE9:8;;

BDT;
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FIR Filter on MMX Pentium

No Unrolling,
no SW pipelining:
1.75 Cycles/Tap

loopl:
movg mml, [esi] ; load four samples
praad did mmld, COEFaddrl[edi] ; 4 multiplie=s, 2 adds

/¥ two cvele stall happens here */

raddd mm7, mm0 ;o acoumulate intermed results
add e=di, 8 ; update coefficient index
add esi, 8 ; update delay line polnter
dec ecx ; decrement loop count

Jnz  loopl
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42

FIR on MMX Pentium

loopl:
proaddwd o0,
paddd mm? ,
proaddwd  mml,
paddd mm? ,
00V o mm ,
Mo 3 ,
paddd 7,
proaddwd
paddd mm? ,
proaddwd w3,
{lu i mml ,
oilutde rral,
add edi,
add e=2i,
dec BCx

nz loopl

COEFaddr [edi]
rornd

COEFaddr [edi+h ]
rornd

[esi+lh]
[e=it+Zd]

roral)

COEFaddr [edi+l6]
rornl

COEFaddr [edi+d 4]
[e=i+di]
[esi+d0]]

32

32
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With Unrolling &
SW Pipelining:
0.625 Cycles/Tap

4 multiplies, 2 adds
accumilate intermed results
4 multiplies, 2 adds

accumilate intermed results
load four new samples

load four new samples

accumilate intermwmed results

4 multiplies, 2 adds
accumilate intermed result
4 multiplies, 2 adds

load four new samples
load four new samples
update coefficient index
update delay line pointer

decrement loop count

DT




Don’t Follow the Rules

Or, "rules are made to be broken”

BT
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Specialized Instructions

44

4 Examples (not exhaustive):

e ADSP-2116x has specialized instruction for FFT
« Cne multiplication, and sum and difference of two operands
e TMS320C54x has several specialized instructions
o |LMS, symmetrical FIR filter, polvnomial evaluation, ...
e G4 includes instruction useful for LMS
« Eight multiplications, eight additions, eight roundings with
single-cvele throughput
e DSP16xxx has application-specific operations

» Extended-precision multiplication specialized for enhanced full-
rate (G5l
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Non-Conventional Use

of Execution Units

45

¢ 15-54 convolutional encoder bit-interleaving on Pentium

e Pentium can't do single-cycle
rel ecH, 1 ; rotate, insert prev carry bit

=hl eax, 1 ; 2hift, generate new carry bit
e But it can do single-cycle

rol ecH, 1 ; rotate, insert prev carry bit

add 2a¥, Sax ; 2hift, generate new carry bit

4 Vector maximum search on the ZSP Z5P164xx

loop: ldu rlh, rl4d,1 ; new la-bit wvalus 1in
; rl5, addres=z 1in rl4d

max.e rd,rl4d ; 32-bit max {r5,r4d:,
;irlh, rl1d! includes address

agnl loop ; next walue
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Other Tweaks

46

4 Complex multiplication (a+jb)*{c+jd)
e Doesnt need to be 4 rmultiplications, 2 additions,
e but can be 3 muiltiplications, 5 additions (why?)
e and a complex dot product can be four real, partial dot
products (why?)
¢ Look-up tables for FFT bit-reversal or Hamming
distance

e Often allows significant speed optimization, but can be costly
in terms of memory usage

4 ... and much, much more!
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If Algorithmic Transformations

Don’t Help...

47

4 Choose a different algornthm
e A lower-order IIR filter may be used instead of a higher-order
FIR filter

e Gradient search (LMS) adaptive filter algorithm is less
compute intensive than recursive least squares (RLS)
algorithm

e Different algorithms may cause other problems

« For example, an IR filter ism't unconditionally stable

4 Trade quality of sound or video for faster processing

e Product may become less expensive...
e but with poorer quality
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® As architectures diversify and become more
complicated, optimization gets harder

® Since compilers often do not generate sufficiently
optimized code, it is incumbent upon programmers to
optimize critical code by hand, usually in assembly

# Optimization requires strong knowledge of the
processaor, the algorithm, and the application

¢ Be aware of trade-offs between speed, memory
usage, and power consumption
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For More Information...

® These slides will be available at BDTI's web site:
htip:/ /www.bdti.com

& DSF FProcessor Fundamenials (BDTI, 1996), a
texthook on DSP processors
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