
Article Reprint

TI Aims for Floating-Point DSP Lead
DSP Giant Ups the Ante on VLIW With Powerful ’C6701

By Amit Shoham and Jeff Bier,
Berkeley Design Technology, Inc. (BDTI)

Next month, Texas Instruments plans to reassert
itself in the floating-point DSP market by sampling the
TMS320C6701, the first member of its new high-perfor-
mance floating-point product family. With the introduc-
tion of the ’C6701, TI has put another egg in its VLIW
basket, strengthening its commitment to the VLIW
approach for high-performance DSPs.

Floating-point devices have historically accounted
for a small share of the market for DSPs. Indeed, in recent
years, two of the four major DSP vendors—Lucent and
Motorola—have withdrawn from the floating-point mar-
ket (formally or otherwise), leaving Analog Devices and
TI as the only contenders. While TI’s earlier TMS320C3x
and TMS320C4x lines met with success, in recent years
these families have stagnated as TI has focused on much
higher volume fixed-point products. In the
resulting competitive void, Analog Devices (ADI)
has made significant inroads with its ADSP-
2106x SHARC devices. (ADI recently announced
a second generation of SHARC processors with
SIMD enhancements and higher clock speeds.)
Making matters worse, high-end CPUs have
pulled ahead of DSP chips on floating-point DSP
application performance.

With the ’C6701, TI is back in the floating-
point DSP game. Using the same underlying
VLIW-like architecture as the fixed-point ’C6201
(see MPR 2/17/97, p. 14), the ’C6701 promises to
make TI’s floating-point DSP performance
competitive with that of SHARC and of high-end
general-purpose processors. In doing so, how-
ever, the new device makes the same sacrifices as
the ’C6201: voracious program-memory usage,
software-development complexity, high power
consumption, and system-integration challenges.
Users of floating-point DSPs are accustomed to

sacrificing memory usage and power consumption com-
pared with fixed-point devices, but the ’C67xx is even
more resource-hungry than other floating-point DSPs.

A First in Compatibility
Notably, the ’C67xx and ’C62xx families are the first float-
ing-point and fixed-point DSP families to share the same
underlying architecture: the instruction set of the ’C67xx is a
superset of the ’C62xx instruction set, allowing the ’C67xx to
execute ’C62xx object code. Additionally, the ’C6701 will be
pin-compatible with the fixed-point ’C6201. Because of the
differing priorities of fixed-point and floating-point DSP
users, all previous generations of floating-point DSPs have
been incompatible with their fixed-point siblings.

Developers of DSP-intensive applications often
begin with a floating-point simulation of their applica-
tion and can spend months porting it to a fixed-point
implementation to minimize production costs. For

T H E I N S I D E R S ’ G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

MICROPROCESSOR
VOLUME 12, NUMBER 12

SEPTEMBER 14,1998

REPORT

256

Register Bank A
(16 × 32)

Register Bank B
(16 × 32)

Program Fetch
Instruction Dispatch
Instruction Decode

L1 S1 M1 D1

ALU
ALU,

Shifter Multiply Add/Sub

L2 S2

ALU
ALU,
shifter

M2

Multiply

D2

Add/Sub

Data Bus 1 (64 bits)

Program Memory
(16K × 32)

Data Memory
(32K × 16)

Control/Status
Registers

Data Bus 2 (64 bits)

Figure 1. The block diagram of the ‘C67xx core illustrates the eight execution
units, arranged in two sets of four. The 256-bit-wide instruction bus allows the
core to fetch eight 32-bit instructions per cycle.

2

© M I C R O D E S I G N R E S O U R C E S S E P T E M B E R 1 4 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

applications where the ’C6xxx devices fit, users may create
an initial floating-point product or prototype based on
the ’C67xx and later migrate to the ’C62xx without hav-
ing to switch to a very different type of device.

The pin-compatibility between the ’C6701 and
’C6201 will allow developers to use the same hardware
design for an initial floating-point product and for a later
fixed-point implementation. Unfortunately, the software
compatibility between the ’C67xx and the ’C62xx will
prove less advantageous than one might expect. Convert-
ing optimized ’C67xx assembly code to optimized ’C62xx
assembly code will require almost complete rewriting and
will be extremely challenging, due to the programming
complexity of these devices. If programmers are willing to
give up much of the performance advantage of the devices
and write applications in C, however, the similarity
between the two families will simplify porting to a modest
degree.

Up to One Billion FLOPS
In many respects, the ’C6xxx families resemble a high-end
RISC architecture with an unusual instruction set more than
a conventional DSP architecture. Like its fixed-point coun-
terpart, the ’C67xx core is eight-way VLIW, has a very deep
pipeline, and sports two sets of four execution units, as Fig-
ure 1 shows. The ’C67xx extends the 11-stage pipeline of the
’C62xx to a breathtaking 16 stages.

Like the ’C62xx, the ’C67xx is nominally divided in
half, with 16 registers and four execution units on each
side (A and B). The ’C6xxx families have a register-
oriented architecture, providing 32 general-purpose 32-
bit registers. In contrast, more traditional DSPs typically
provide dedicated address registers, operand registers,
and accumulators. Each of the execution units of the
’C67xx has unlimited access to the registers on its side of
the device. Additionally, during each clock cycle, any one
execution unit on each side may access one register on the
opposite side of the device.

The two groups of execution units are nearly identi-
cal, and they perform the same functions as on the ’C62xx.
Three of the execution units on each side, however, have
been extended to support 32-bit floating-point arithmetic.
Each group contains a floating-point multiplier (M), a
floating-point adder (L), a floating-point unit for compar-
isons and other miscellaneous operations (S), and a
load/store unit (D).

With three FP execution units per side, the ’C67xx is
capable of up to six FP operations per clock cycle, or one
billion FP operations per second at its projected clock
speed of 167 MHz. But keeping all six FP execution units
busy during every clock cycle requires an even mix of
multiply, add, and miscellaneous operations, such as
compare or absolute value. This instruction mix is
uncommon in DSP applications, so the chip’s peak per-
formance will rarely be achieved in applications.

With one FP multiplier and one FP adder per side,
the ’C67xx is capable of performing up to 334 million
multiply-accumulates per second at 167 MHz—assuming
software pipelining or loop unrolling is used to cover the
latencies of the multiply, add, and load operations. By this
somewhat more realistic performance measure, the
’C67xx is still faster than any other floating-point DSP.

The two FP adders also perform 40-bit fixed-point
arithmetic as well as logical compares, normalization, bit-
count operations, and integer/FP conversions. Multiplica-
tion is handled by the M units. In addition to FP multipli-
cation, the M units can perform both signed and unsigned
16 × 16 → 32-bit multiplication and 32 × 32→ 32-bit or
32 × 32 → 64-bit integer multiplication.

The S units perform FP comparison, absolute value,
and reciprocal or reciprocal–square-root estimate opera-
tions. The S units also have a 32-bit fixed-point ALU and a
40-bit shifter. These units can perform some of the same
32-bit fixed-point arithmetic operations as the L units,
along with 32-bit and 40-bit shifts. One S unit is also
responsible for branching and branch-address generation.

A 32-bit adder allows the D units to perform simple
fixed-point arithmetic operations, but their primary pur-
pose is address generation.

Most fixed-point operations execute in a single cycle
(multiplies, loads, and branches are exceptions), but
floating-point operations have longer latencies (typically
three to five cycles), complicating software development.

Double-Precision Arithmetic Takes Longer
The ’C67xx is the only DSP to support both single-precision
and double-precision IEEE-754 floating-point arithmetic.
All floating-point instructions include both single- and
double-precision variants, and instructions to convert
between the single- and double-precision formats are also
provided. Double-precision values are stored in adjacent
pairs of registers, as are 40-bit fixed-point operands.

While all single-precision arithmetic instructions
have single-cycle throughput, most double-precision
arithmetic instructions stall the corresponding execution
unit for one or three cycles and have longer latencies than
their single-precision variants.

These stalls and other restrictions considerably reduce
the performance of the ’C67xx on double-precision arith-
metic compared with single-precision arithmetic. For
example, the ’C67xx is capable of up to 83.5 million double-
precision multiply-accumulates per second at 167 MHz
compared with 334 million single-precision multiply-
accumulates per second at the same clock rate.

For the vast majority of signal-processing applica-
tions, single-precision arithmetic is sufficient. However,
for those rare applications that require double precision,
the ’C67xx will have a strong performance advantage over
other floating-point DSPs, which must emulate double-
precision operations in software.

Up to 256 Bits of Instructions Per Cycle
The ’C67xx has a VLIW-like architecture like that of its
fixed-point predecessor, most accurately described as a stati-
cally scheduled superscalar machine. As on the ’C62xx, the
’C6701 core consumes eight 32-bit instructions at once from
its on-chip 256-bit instruction bus. The eight-instruction
group, known as a fetch packet in TI’s nomenclature, must
be 32-byte aligned. The ’C67xx always fetches a complete
fetch packet at once. However, not all eight instructions in
the fetch packet are necessarily executed simultaneously.

Independent of the 256-bit fetch packet, the ’C67xx
defines an execute packet, which can be 1–8 instructions
long. All instructions in an execute packet are dispatched
together. A bit in each instruction indicates whether that
instruction is the last one in its execution packet. It is the
programmer’s (or compiler’s) responsibility to guarantee
that all instructions in the execute packet can, indeed, be
dispatched simultaneously. The ’C67xx hardware does no
dependency checking among instructions.

Although there are eight instructions in each fetch
packet, and eight execution units, each instruction does
not necessarily correspond to one execution unit; the
instructions are not position-dependent within the fetch
packet, which is the traditional VLIW method. Instead,
each instruction is encoded for a specific execution unit.

Some fixed-point instructions can be encoded for
multiple types of execution units, but the encoding is fixed
prior to run-time. The fixed-point ADD instruction, for
example, can be encoded for the L1, L2, S1, S2, D1, or D2
units. Floating-point instructions must be encoded for a
particular type of execution unit; the floating-point ADDSP

instruction, for example, can be encoded
only for the L1 or L2 units. Programmers can
explicitly dictate the binding of instructions
or leave it to the assembler or compiler.

Under ideal circumstances, all eight of
the ’C67xx’s execution units can be kept
busy on every cycle. In practice, data depen-
dencies, resource conflicts, multicycle oper-
ations, and other realities of programming
will force less than total utilization of the
core’s resources. Rather than waste space in
the fetch packet by padding with NOPs, TI
allows multiple execution packets in a sin-
gle fetch packet.

RISC-Like Instructions With Predication
Table 1 lists the new instructions found in the
’C67xx but not in the fixed-point ’C62xx.
Every ’C67xx instruction (including branches)
can be predicated, or executed conditionally,
based on the zero/nonzero status of the five
condition registers. Theoretically, all eight
instructions in a packet could each be predi-
cated on a different condition. This type of

predicated execution is also used in the Philips Trimedia
architecture (see MPR 11/13/95, p. 22), a VLIW media pro-
cessor.

The ’C67xx has none of the moderately complex
multioperation instructions most DSP chips have. Multi-
ply-accumulate, for example, is handled as a multiply fol-
lowed by a separate add. Fetching a memory-resident
coefficient requires a third, independent, operation.
Loops must also be explicitly coded in software; there is
no intrinsic zero-overhead loop feature in the ’C67xx.
Loop counters must be explicitly decremented, with a
conditional branch used to return to the top of the loop.

Because the ’C67xx divides common DSP opera-
tions into separate instructions, performance compar-
isons with conventional DSPs are tricky. A single multi-
ply-accumulate becomes three or four different
instructions on the ’C67xx compared with a single
instruction on a conventional DSP. This makes MIPS a
poor performance metric when comparing the ’C67xx
with other DSPs. In promoting the fixed-point ’C6201, TI
has focused heavily on its “1,600 MIPS” performance
claim, leaving many users to discover for themselves that
’C6201 MIPS is defined quite differently from traditional
DSP MIPS. The ’C6701 presents the same hazard.

More Memory, Please!
TI’s initial implementation of the ’C67xx architecture is the
TMS320C6701. The part has 128 Kbytes of on-chip mem-
ory, evenly divided between program and data space.

The on-chip program memory has a 256-bit path
into the ’C67xx core, allowing it to transfer an entire

3

© M I C R O D E S I G N R E S O U R C E S S E P T E M B E R 1 4 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

Description

Absolute value (single-/double-precision)
Add (single-/double-precision)
Multiply (single-/double-precision)
Subtract (single-/double-precision)
Reciprocal estimate (single-/double-precision)
Reciprocal square root estimate (single/double)

Add doubleword address nonsaturating

Convert double to float
Convert float to double
Convert (float/double) to integer
Convert float to integer, and truncate instead of round
Convert integer to (float/double) (unsigned)

Load doubleword

Compare for equality (single-/double-precision)
Compare for greater-than (single-/double-precision)
Compare for less-than (single-/double-precision)

Mnemonic

Floating-Point Arithmetic
ABS(SP/DP)
ADD(SP/DP)
MPY(SP/DP)
SUB(SP/DP)
RCP(SP/DP)
RSQR(SP/DP)
Fixed-Point Arithmetic
ADDAD
Conversion
DPSP
SPDP
(SP/DP)INT
SPTRUNC
INT(SP/DP)(U)
Load/Store
LDDW
Floating-Point Comparison
CMPEQ(SP/DP)
CMPGT(SP/DP)
CMPLT(SP/DP)

L

•

•

•

•
•
•

M

•

S
•

•
•

•

•
•
•

D

•

•

Ex Unit

Table 1. New 'C6xxx instructions introduced in the 'C67xx. The 'C67xx instruction set
is a superset of the 'C62xx instruction set (see MPR 2/17/97, p. 14), adding support for
floating-point arithmetic and doubleword loads and address calculations.

4

© M I C R O D E S I G N R E S O U R C E S S E P T E M B E R 1 4 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

eight-word fetch packet in one cycle. In contrast, off-chip
memory accesses occur over a 32-bit external bus, requir-
ing at least eight cycles to transfer an eight-word fetch
packet. The ’C67xx must therefore execute from on-chip
program memory for good performance. At the user’s
option, the program memory can be configured as a 64K
direct-mapped cache.

The ’C6701’s on-chip data memory is divided into
eight 8K banks, each with a 16-bit bus to the execution
units. All eight banks can be accessed simultaneously, but
simultaneous accesses to the same bank are not allowed.
This configuration allows an on-chip access rate of four
32-bit words per cycle, enough bandwidth to support the
core’s peak processing rate of two multiply-accumulate
operations per cycle. Off-chip data memory accesses incur
severe penalties, so avoiding them is paramount.

VLIW processors traditionally suffer from very high
program-memory usage. TI has taken steps to mitigate
this problem in the ’C6xxx architectures. Although these
steps alleviate the problem to some degree, the ’C67xx’s
memory usage will still be significantly higher than that of

a more traditional DSP. Thus, the 64 Kbytes of on-chip
program memory are equivalent to about 16–32 Kbytes
of program memory on a traditional floating-point DSP.

The amounts of on-chip program and data memory
available on the ’C67xx are sufficient for many of the
applications that utilize fixed-point or older floating-
point DSPs, but they are too small for many of the appli-
cations that merit the cost of a high-performance
floating-point processor. In contrast, Analog Devices’ new
ADSP-21160 provides 512 Kbytes of on-chip memory
and generally consumes less program space than the
’C67xx.

Floating-point DSPs are often used in multiproces-
sor configurations. Devices such as TI’s ’320C4x and
ADI’s ADSP-2106x have included extensive features to
facilitate integration in multiprocessor environments,
such as specialized external memory interfaces and mul-
tiple interprocessor communication ports. Surprisingly,
the ’C6701 omits these features, making do with a bare-
bones complement of interfaces consisting of its external
memory interface, two serial ports, and a host port. Of
course, TI may add multiprocessor features later, but, for
now, their absence will limit the ’C6701’s appeal for many
of the applications that have gobbled up large numbers of
floating-point DSPs in the past.

An Assembly Programmer’s Worst Nightmare
As with the ’C62xx, crafting carefully arranged object code is
crucial to extracting performance from the ’C67xx. This will
be no easy task.

As mentioned previously, the chip does no depen-
dency checking and incorporates no interlocks; multiple
writes to the same destination register give undefined
results. Avoiding this condition can be harder than it
sounds, because not all instructions have the same latency.
For example, issuing an FP add instruction one cycle after
a load with the same destination will cause a failure
because of their different latencies.

Packing two mutually exclusive conditional
instructions in the same execute packet is not a pro-
gramming error and, in fact, can be a good idea. Pro-
grammers can create their own conditional moves, adds,
or other functions simply by combining conflicting
instructions that are predicated on opposite states of the
same condition. Again, there is an opportunity for mis-
chief here, as the ’C6xxx software tools cannot check for
unintended conflicting instructions that are predicated
on the contents of unrelated registers.

Branches introduce further programming complex-
ity. Since the chip has no branch prediction, all taken
branches introduce a five-cycle delay before the pipeline
refills from the branch target, as Figure 2 illustrates. The
’C67xx executes instructions in the branch-delay slot,
which in this case has space for 40 instructions (5 cycles ×
8 instructions).

PG

PS

PW

PR

DP

DC

E1

E2

E3

E4

E5

Lo
ad

s

Br
an

ch
es

M
ul

t,
 A

dd
Si

ng
le

-p
re

ci
si

on
 f

lo
at

Generate program address

Program address send

Program memory access

Instruction dispatch

Instruction decode

Execute 1

Execute 2

Execute 3

Execute 4

Execute 5

Fetch reaches CPU boundary

E6

E7

E8

E9

E10

Fi
x

M
ul

t

M
is

c
D

ou
bl

e
Pr

ec
is

io
n

Execute 6

Execute 7

Execute 8

Execute 9

Execute 10

Figure 2. The 'C67xx has a 16-stage pipeline, but few operations
use more than 11 stages. Floating-point adds and multiplies com-
plete in stage E4, and loads complete in stage E5, for example.

LOOP:
 [B0] LDDW .D1 *A4++[1],A7:A6 ; if(B0!=0) load A7:A6
||[B0] LDDW .D2 *B4++[1],B7:B6 ; if(B0!=0) load B7:B6
|| MPYSP .M1X A6,B6,A5 ; A5 = A6 * B6
|| MPYSP .M2X A7,B7,B5 ; B5 = A7 * B7
|| ADDSP .L1 A5,A8,A8 ; A8 = A8 + A5
|| ADDSP .L2 B5,B8,B8 ; B8 = B8 + B5
||[B0] B .S1 LOOP ; if BO not zero, loop
||[B0] SUB .S2 B0,2,B0 ; decrement counter

Figure 3. In this example of an FIR filter, eight instructions fit in a
single execute packet, executing in parallel and calculating two
taps per iteration.

5

© M I C R O D E S I G N R E S O U R C E S S E P T E M B E R 1 4 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

The processor is not interruptible while any execute
packet in the pipeline contains a branch or is in the delay
slot of a branch. Given the long branch latency, this fact
means the processor is rarely interruptible, rendering
interrupts useless in many applications.

Manual scheduling on the ’C67xx is extremely com-
plicated. Figure 3 shows the kernel of a two-tap FIR filter
implemented in a single repeating execute packet. It per-
forms two multiplies, two adds, and two loads while it
decrements the loop counter and branches back to itself.

The effects of this packet are difficult to deduce from
a cursory reading of the source code, complicated by the
fact that adds, multiplies, loads, and branches have differ-
ent latencies (four, four, five, and six clocks, respectively).

On any given iteration of this loop, n, the ’C67xx
resolves the multiplies and additions executed on itera-
tion n–4, the data loaded on iteration n–5, and the branch
encountered on iteration n–6. Once under way, this loop
executes two taps per cycle, better than most DSPs and, at
167 MHz, faster than all but the 200-MHz ’C62xx.

The deep software pipeline surrounding this loop
(not shown in the figure), however, takes 5 clock cycles
and 21 instructions to fill, and an additional 13 clock
cycles and 16 instructions to flush. The extra cycles can
significantly detract from the chip’s peak performance
when loops are nested or when iteration counts are low.
Moreover, program-memory usage can be more than an
order of magnitude greater than for traditional DSPs.

Manually scheduling the processor’s eight execution
units for optimum performance is a daunting task. As
with the ’C62xx, TI will provide a C compiler and assem-
bly optimizer to ease software development. The assembly
optimizer accepts “linear” meta-assembly code that is not
parallelized and that assumes single-cycle latency for all
instructions. The optimizer attempts to transform this
code into a scheduled, optimized form.

Although the optimizer reduces the difficulty of
writing assembly code for the ’C6xxx families, debugging
code generated by the optimizer is much more difficult
than debugging assembly code for more traditional DSP
processors, and the performance of the optimizer for the
’C62xx has so far been uneven. Most programmers will

find the ’C67xx too complex for assembly-level coding,
forcing them to program in C and give up some of the
part’s impressive performance.

Promising Floating-Point DSP Performance
The final question is whether the performance of the ’C67xx
is as daunting as its programming model. Although no
hardware-verified numbers are available at this time, BDTI
has run some preliminary benchmarks on a cycle-accurate
simulator of the ’C6701.

Although TI announced the ’C6701 at 167 MHz, our
analysis uses a more conservative speed of 150 MHz to
evaluate the likely performance of initial ’C6701 devices.
The ’C6701’s fixed-point cousin, the ’C6201, was
announced by TI at 200 MHz, but initial samples ran at
approximately 120 MHz; and 200-MHz samples did not
become generally available for approximately a year after
the first samples were provided. It isn’t clear whether this
unusually long time lag was part of a deliberate strategy by
TI to gain an apparent advantage by preannouncing, or
whether TI simply had difficulty obtaining full-speed sili-
con. Either way, some skepticism seems warranted until
’C6701 devices become available.

BDTI’s complex-FIR filter benchmark is an FIR filter
that operates on blocks of complex data. Such filters are
commonly used in modem channel-equalization applica-
tions, for example. A simulated ’C6701 finished the BDTI
complex FIR filter benchmark in 12.1 microseconds, 20%
less time than our projected result for the Analog Devices
new ADSP-21160. As Table 2 shows, the ’C6701s are much
faster than older floating-point DSPs: roughly four times
faster than the ADSP-21065L and more than eight times
faster than TI’s own ’C44 on this benchmark.

In the past few years, high-end general-purpose
processors have outpaced floating-point DSPs, providing
better FP performance. The new ’C67xx and ADSP-21160
can compete head-to-head with the FP performance of
general-purpose processors. The ’C6701 and ADSP-21160
execution times on BDTI’s complex-block FIR filter
benchmark are faster than that of the 350-MHz PowerPC
604e, as Table 2 shows. As general-purpose processors
begin to provide floating-point SIMD capabilities in the

Processor

'C6701*
'C44
ADSP-21160*
ADSP-21065L
PowerPC 604e

Vendor

TI
TI

Analog Devices
Analog Devices
Motorola/IBM

Execution
Speed (MHz)

150
30
100
60
350

Program
Time (µS)

12.1
99.0
15.4
46.9
16.9

Size
(bytes)

444
96
156
180
192

Table 2. The results of BDTI’s complex FIR-filter benchmark show
the ‘C6701 to be the highest performing floating-point processor
of those evaluated. *These processors are not yet available. Clock
speeds for these processors are BDTI’s projections, and benchmark
results are preliminary. (Source: Buyer's Guide to DSP Processors,
1999 Edition, BDTI)

P r i c e & Av a i l a b i l i t y

According to Texas Instruments, initial samples of the
’C6701 are expected in October with production quanti-
ties to ship in the second quarter of 1999. Initial pricing is
$196 (quantity 10,000). The device will be fabricated in
TI’s 0.18-micron process and packaged in a 352-pin BGA.
Power consumption is projected to be 1.9 W at 1.8 V and
167 MHz. Further details are available at www.ti.com/sc/
docs/dsps/products/c6000/c67x/index.html.

6

form of multimedia extensions such as AltiVec and KNI,
however, they may regain the FP performance lead.

As expected, code density leaves much to be desired
on the ’C67xx. The ’C67xx binary for the BDTI complex-
FIR-filter benchmark was almost three times larger than
that for the ADSP-21160 and more than four times larger
than that for the ’C44.

Back in the Game
With the ’C6701, TI is making a big splash in the floating-
point DSP business after several quiet years. While floating-
point devices represent only a small share of the total mar-
ket, it appears that the DSP giant is not content to cede
leadership of any segment of the market to its competitors.

If TI takes as long to reach its projected 167-MHz clock
speed for the ’C6701 as it did for the ’C6201, however, the

Analog Devices ADSP-21160 may deliver similar perfor-
mance without the ’C6701’s shortcomings in on-chip mem-
ory and multiprocessor support, and with a simpler pro-
gramming model. Because of its pin-compatibility with the
’C6201, the ’C6701 is likely to find a niche as a rapid proto-
typing and algorithm-development tool for users who plan
to build products based on the ’C6201 but want prototypes
running quickly, without first having to grapple with fixed-
point considerations.

Authors Amit Shoham and Jeff Bier are with Berkeley
Design Technology, Inc., the DSP technology analysis and
software development firm. Shoham and Bier are co-authors
of Buyer’s Guide to DSP Processors, the 1999 edition of
which will be available from MDR in October.

M

© M I C R O D E S I G N R E S O U R C E S S E P T E M B E R 1 4 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

■■ 1-year subscription (U.S. & Canada: $695, Europe: Û695, elsewhere: $795)

■■ 2-year subscription (U.S. & Canada: $1,295, Europe: Û1,300, elsewhere: $1,495)
Please add applicable sales tax for the following states: AL, AZ, CO, DC,
GA, ID, IN, IA, KS, LA, MD, MO, NV, NM, RI, SC, SD, TN, UT, VT, WA, AND
WV. Please add GST or HST tax if in Canada.

■■ My check is enclosed.

■■ Bill my company: P.O. No. (copy attached) __________________

■■ Charge my:—■■ Visa—■■ MasterCard—■■ American Express

Card # _______________________________—Exp.__________

Signature __

Name __________________________—Title _______________

Company___

Address__

City_____________________State _______—Zip ____________

E-Mail ___

Phone () _______________________________________

Please start my subscription to Microprocessor Report.
Each subscription includes 17 issues per year (every three weeks). Include credit card information or payment in U.S. funds on U.S. bank
(purchase orders accepted from U.S. companies only).

874 Gravenstein Hwy. South, Sebastopol, CA 95472; phone 707.824.4001, fax 707.823.0504, e-mail cs@mdr.zd.com; access the Web
at www.MDRonline.com. European Orders: Parkway Gordon, Westwood House, Elmhurst Rd., Goring, Reading, RG8 9BN, U.K.;
phone 44.1491.875386; fax 44.1491.875524; e-mail parkway@rmplc.co.uk; access the Web at www.parkway.co.uk.

MICRODESIGN
R E S O U R C E SR E S O U R C E S

S U B S C R I P T I O N O R D E R F O R M

