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Berkeley Design Technology, Inc.

Introduction

Digital signal processing (DSP) is the application of
mathematical operations to digitally represented signals.
Because digital signals can be processed with cost-effec-
tive digital integrated circuits, DSP systems can econom-
ically accomplish complex tasks, such as speech
synthesis and recognition, that would be difficult or im-
possible to accomplish using conventional analog tech-
niques.

The market for products using DSP technology, such
as wireless communication devices and digital audio ap-
pliances, is growing rapidly. Semiconductor manufac-
turers have responded to this demand by producing an
expanding array of DSP processors—microprocessors
designed specifically for digital signal processing. Se-
lecting the right DSP processor for an application is a
difficult and time-consuming task for DSP system de-
signers. This paper presents a methodology for evaluat-
ing DSP processor performance, one of the key
considerations in choosing a processor.

DSP Processors

Strictly speaking, the term “DSP processor” applies
to any microprocessor that operates on digitally repre-
sented signals. In practice, however, the term refers to
microprocessors specifically designed to perform digital
signal processing. Because most signal processing sys-
tems perform complicated mathematical operations on
real-time signals, DSP processors use special architec-
tures to accelerate repetitive, numerically intensive cal-
culations. For example, DSP architectures commonly
include circuitry to rapidly perform multiply-accumulate
operations, which are useful in many signal processing
algorithms such as filtering. Also, DSP processors often
contain multiple-access memory architectures that allow
the processor to simultaneously load multiple operands,
such as a data sample and a filter coefficient, in parallel
with loading an instruction. In addition, DSP processors
often include a variety of special memory addressing
modes and program-flow control features designed to
accelerate the execution of repetitive operations. Lastly,
most DSP processors include specialized on-chip periph-
erals or I/O interfaces that allow the processor to effi-
ciently interface with other system components, such as
analog-to-digital converters and host processors.

This paper focuses on the performance of program-
mable DSP processors. The performance evaluation
methodology we describe can also be applied to measure

the DSP performance of general-purpose processors. In
particular, engineers may be interested in evaluating the
DSP performance of general-purpose processors that
have been designed to provide some support for DSP.
Many manufacturers of desktop general-purpose proces-
sors have enhanced the signal processing capabilities of
their processors by adding instructions and hardware ac-
celerators. For example, Intel has developed the MMX
and SSE extensions for the Pentium processor line. And
in the embedded systems arena, many microcontroller
and embedded processor manufacturers have also added
DSP functionality to their processors. An example is Hi-
tachi’s SH-DSP, which combines microcontroller and
DSP features.

What is DSP Processor Performance?

DSP processor performance can be measured in
many ways. The most common metric is the time re-
quired for a processor to accomplish a defined task. On
the other hand, memory usage and energy consumption
may be equally—or even more—important in some ap-
plications. This paper will examine all three of these
metrics, with a focus on execution time.

Measuring DSP processor performance in a way that
allows fair comparisons between processor families is
difficult. Furthermore, performance measurements are
only useful to the typical engineer if the measurements
can be related to the requirements of particular applica-
tions. To address these challenges, Berkeley Design
Technology, Inc. (BDTI) uses a two-fold methodology
of algorithm kernel benchmarking and application pro-
filing.

Traditional Approaches to Performance
Measurement

MIPS, MOPS, and MACS
Traditional approaches to performance measurement

often use very simple metrics to describe processor per-
formance. The most common performance unit, MIPS
(millions of instructions per second), is misleading be-
cause of the varying amounts of work performed by in-
structions—a typical instruction on one processor may
accomplish far more work than a typical instruction on
another processor. This is especially true on DSP proces-
sors, which often have highly specialized instruction
sets. Without some gauge of the relative efficiency of
different instruction sets, MIPS figures are only useful
within the context of a single known processor architec-
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ture. Similarly, MOPS (millions of operations per sec-
ond) suffers from a related problem—what counts as an
operation and the number of operations needed to ac-
complish useful work vary greatly from processor to pro-
cessor.

Other commonly quoted performance measurement
units can also be misleading. Because multiply-accumu-
late operations are central to many DSP algorithms, such
as FIR filtering, correlation, and dot-products, some pro-
cessor manufacturers quote performance in MACS (mul-
tiply-accumulates per second). However, DSP
applications involve many operations other than multi-
ply-accumulates, so MACS alone are not a reliable pre-
dictor of performance. Furthermore, most DSP
processors have the ability to perform other operations in
parallel with MAC operations. A processor's ability to
perform such parallel operations can have large impact
on inner-loop performance, but this is disregarded by
MACS measurements.

Neither MIPS, MOPS, nor MACS address secondary
performance issues like memory usage and power con-
sumption. This is a severe limitation because execution
time means little if application memory requirements ex-
ceed system constraints. Furthermore, if high memory
consumption requires using slower external memory,
then the processor’s speed may be reduced. Likewise, in
a portable application, a processor is unusable if its pow-
er consumption exceeds the available battery capacity.
Many manufacturers quote a “typical” power consump-
tion at a given clock rate. However, power consumption
varies with different instructions and data values, so such
specifications are suspect without details on the precise
instructions and data used in the measurement. Further-
more, such measurements do not account for special
power-saving modes available when a processor (or por-
tions of it) is idle.

It should be noted that energy consumption, which
determines battery life, is usually more important to de-
signers than power consumption. A DSP processor that
can execute its work quickly and then enter a power-sav-
ing mode may consume less energy in a particular appli-
cation than another DSP processor with lower power
consumption. BDTI's processor evaluations report ener-
gy consumption.

Application Benchmarking
A common approach used to benchmark computer

systems is to use complete applications, or even suites of
applications. Application benchmarking allows the
memory usage and energy consumption performance of
a processor to be measured. And it is more suited to com-

parisons between different processor families than MI-
PS, MOPS, or MACS.

This approach is used by the Standard Performance
Evaluation Corporation in the popular SPEC bench-
marks for general-purpose processors and systems. In
DSP, examples of applications include speech coders
(CELP, VSELP, GSM, etc.), modems (V.34, V.90, etc.),
and disk drive servo control programs. This approach
works best in cases where there is application software
portability—i.e., when the application is coded in a high-
level language like C. Benchmarking using applications
written in a high-level language amounts to benchmark-
ing the compiler as well as the processor. Unfortunately,
because of the poor efficiency of compilers for the most
cost-effective DSP processors and the demanding per-
formance requirements of the applications, the perfor-
mance-critical portions of DSP software are typically
coded in assembly language. Thus a benchmarking
methodology that measures the compiler and the proces-
sor together does not reflect the needs of typical DSP
system designers.

Even if application benchmarks are coded in assem-
bly language, one encounters four problems with appli-
cation benchmarking for DSP. First, most DSP
applications are not sufficiently well-defined to permit
fair comparisons. For instance, two implementations of a
standard modem may carry out arithmetic with different
numerical precisions, depending on whether the objec-
tive is achieving the lowest possible error rate or mini-
mizing demands on the processor. Second, with most
complex applications, it’s virtually impossible to ensure
that software is optimal, or even near-optimal. Thus, ap-
plication implementations may be benchmarking the
programmer as much as the processor. Third, full appli-
cation benchmarks tend to measure a system’s perfor-
mance, not just the processor’s. Isolating the
performance of a DSP processor from that of other sys-
tem components like external memory and microcontrol-
ler coprocessors could be very difficult. Last, coding an
entire application for multiple processors could take
years of engineering time, making it an impractical ap-
proach for benchmarking.

Algorithm Kernel Benchmarking

Berkeley Design Technology’s methodology of algo-
rithm kernel benchmarking and application profiling is a
practical compromise between oversimplified MIPS-
type metrics and overly complicated application-based
benchmarks. Algorithm kernels are the building blocks
of most signal processing systems and include functions
such as fast Fourier transforms, vector additions, filters,
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etc. Algorithm kernels offer several compelling advan-
tages as benchmarks:

• Relevance. Algorithm kernels can be selected by
examining DSP applications and focusing on those
portions of the applications that account for the larg-
est share of the processing time. This guarantees
their relevance.

• Ease of specification. By virtue of their modest
size, algorithm kernels can be well-defined: a speci-
fication can state their input and output require-
ments, include test vectors to verify functional
conformance, and indicate which algorithm variants
and optimizations are allowable. For example, there
are many techniques for implementing a FFT. With-
out specifying the exact type of FFT, one cannot
fairly compare two processors’ FFT execution
times.

• Optimization. Because algorithm kernels are of a
moderate size, a skilled programmer can write the
code in assembly language and be fairly certain that
his or her implementation is optimal, or very close to
optimal, on a given processor.

• Ease of implementation. Due to their moderate
size, algorithm kernels can be implemented in a rea-
sonable amount of time, even with thorough optimi-
zation.

The BDTI Benchmarks™, the basic suite of algo-
rithm kernels used in BDTI’s DSP processor bench-
marking, are shown in Table 1. BDTI calculates
execution time, memory usage, and energy consumption
for each benchmark. Most of the benchmarks involve
transforming an input data set into an output data set. The
exception is the Control benchmark, in which the proces-
sor must execute a contrived sequence of operations,
such as conditional branching and subroutine calls, that
are commonly needed in control code. As DSP applica-
tions become more complex and system designers try to
achieve higher levels of system integration, DSP proces-
sors will increasingly be called upon to perform control
functions.

With the exception of the control benchmark, BDTI
optimizes each benchmark for execution time. The Con-
trol benchmark is optimized for memory usage since
memory usage is usually a greater concern than speed for
control code.

Measuring Algorithm Kernel Execution

There are several ways to measure a processor’s per-
formance on an algorithm kernel benchmark. Cycle-ac-
curate software simulators usually provide the most

Function Description
Example

Applications

Real Block
FIR

Finite impulse
response filter that
operates on a block of
real (not complex)
data.

Speech process-
ing (e.g., G.728
speech coding).

Complex
Block FIR

FIR filter that oper-
ates on a block of
complex data.

Modem channel
equalization.

Real Single-
Sample FIR

FIR filter that oper-
ates on a single sam-
ple of real data.

Speech process-
ing, general filter-
ing.

LMS
Adaptive FIR

Least-mean-square
adaptive filter; oper-
ates on a single sam-
ple of real data.

Channel equaliza-
tion, servo con-
trol, linear
predictive coding.

IIR

Infinite impulse
response filter that
operates on a single
sample of real data.

Audio process-
ing, general filter-
ing.

Vector Dot
Product

Sum of the pointwise
multiplication of two
vectors.

Convolution, cor-
relation, matrix
multiplication,
multi-dimen-
sional signal pro-
cessing.

Vector Add
Pointwise addition of
two vectors, produc-
ing a third vector.

Graphics, com-
bining audio sig-
nals or images.

Vector
Maximum

Find the value and
location of the maxi-
mum value in a vec-
tor.

Error control cod-
ing, algorithms
using block float-
ing-point.

Viterbi
Decoder

Decode a block of bits
that has been convolu-
tionally encoded.

Error control cod-
ing.

Control

A sequence of con-
trol operations (test,
branch, push, pop,
and bit manipulation).

Virtually all DSP
applications
include some con-
trol code.

256-Point
In-Place FFT

Fast Fourier Trans-
form converts a time-
domain signal to the
frequency domain.

Radar, sonar,
MPEG audio
compression,
spectral analysis.

Bit Unpack
Unpacks variable-
length data from a bit
stream.

Audio decom-
pression, proto-
col handling.

TABLE 1. BDTI Benchmarks.
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convenient method for determining cycle counts. A cy-
cle-accurate simulator models a processor’s execution of
instructions and keeps accurate cycle counts by making
appropriate adjustments when factors such as pipeline
interlocking or bus contention slow the operation of the
processor. Software simulators offer a controlled, flexi-
ble, and interactive environment for testing and optimiz-
ing code. Some software simulators include support for
macros or scripts that can automate performance mea-
surement and functionality verification and allow engi-
neers to quickly see how code changes affect a
processor’s performance.

Hardware-based application development tools can
also be used to measure execution time and are needed to
precisely gauge energy consumption. Hardware tools,
such as emulators, allow the user to download code from
a PC to the target processor. Using a debugger, most
hardware emulators allow the processor to step through
the code line by line, or to run the code until a breakpoint
is reached.

Code can be run in continuous loops on development
boards to measure energy consumption. Energy con-
sumption is measured by isolating the power going to the
DSP processor from the power going to other system
components, running a benchmark in a repeating loop,
and using a current probe to record the time-varying in-
put current under carefully controlled conditions.

Such energy consumption measurements can be
time-consuming and difficult. A less accurate but easier
alternative is to obtain a credible estimate of typical pow-
er consumption and multiply it by the time taken to exe-
cute a benchmark. This is the approach taken by BDTI.

Determining benchmark performance for new pro-
cessors without software or hardware development tools
is a tedious and error-prone process. One must manually
calculate the time required to execute each instruction in
the benchmark and be careful to check that the bench-
marks are functionally correct. Because pipeline inter-
locks or bus conflicts can slow execution time, the
processor architecture must be thoroughly understood
before instruction execution times are calculated.

Benchmark Results

Figure 1 shows the execution time results of several
processors on the BDTI fast Fourier transform (FFT)
benchmark. The FFT is a computationally efficient algo-
rithm for computing the discrete Fourier transform,
which converts time-domain signals into their frequen-
cy-domain representations. The results illustrate how ar-
chitectural features affect a processor’s performance,

yielding benchmark results that are not what might be
expected from a simple comparison of MIPS.

Texas Instruments’ TMS320C6203 is a VLIW-based
processor that can issue and execute up to eight instruc-
tions per instruction cycle. Hence, at the 300 MHz clock
rate shown here, it has a MIPS rating of 2400 MIPS.
However, its relative speed compared to another Texas
Instruments DSP processor, the architecturally conven-
tional TMS320C5416, is not nearly as high as the differ-
ence between the two processors’ MIPS ratings suggests.
Despite a MIPS ratio of 15:1, the TMS320C6203 exe-
cutes the FFT benchmark only 7.8 times faster than the
TMS320C5416. A major reason for this is that
TMS320C6203 instructions are simpler than
TMS320C5416 instructions, so the TMS320C6203 re-
quires more instructions to accomplish the same task. In
addition, the TMS320C6203 is not always able to make
use of all of its available parallelism because of limita-
tions such as data dependencies and pipeline effects.

This example illustrates why using MIPS ratings to
compare the performance of different processors may be
misleading, and why BDTI believes that algorithm ker-
nel-based benchmarking provides much more meaning-
ful results with which to compare processor
performance.

Of course, one must be cautious when interpreting
benchmark results. For example, a processor’s data word
width affects memory usage as well as numerical accu-
racy. The benchmark results for a finite impulse re-
sponse filter implemented on a 24-bit processor might
show 50% more data memory usage than the same filter
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FIGURE 1. Execution times for a 256-point complex FFT,
in microseconds (lower is better).

Note: Times are calculated for the fastest version of each processor projected
to be available in June 2000. For the processors with on-chip cache, “-C”
indicates performance with cache pre-loaded.

Floating-PointFixed-Point

T
M

S
32

0C
62

03
(3

00
M

H
z)

T
M

S
32

0C
67

01
(1

67
M

H
z)

M
S

C
81

01
(3

00
M

H
z)

T
M

S
32

0C
54

16
(1

60
M

IP
S

)

D
S

P
56

31
1

(1
50

M
IP

S
)

P
en

tiu
m

III
-C

(1
G

H
z)

P
en

tiu
m

III
(1

G
H

z)



PAGE 5 OF 7

© 1997-2002 Berkeley Design Technology, Inc.

implemented on a 16-bit processor. This increased mem-
ory usage is a result of the extended precision of the 24-
bit data. In fact, since the 24-bit processor is calculating
the filter result to 50% greater precision, the 24-bit pro-
cessor is in a sense performing more work—a fact not re-
flected in the benchmark results. If the application needs
additional precision, the 24-bit processor may be an ex-
cellent choice. On the other hand, if 16-bit precision is
sufficient, then the 24-bit processor may be a poor choice
because it consumes more data memory.

Application Profiling

The results of algorithm kernel benchmarks are use-
ful but incomplete without an understanding of how the
kernels are used in actual applications. “Application pro-
filing,” which refers to a set of techniques used to mea-
sure or estimate the amount of time, memory or other
resources that an application spends executing its vari-
ous subsections, can be used to relate algorithm kernels
to actual applications.

Application profiling at the algorithm kernel level
looks at the number of times key algorithm kernels are
executed when an application is run. This can be done in
a number of ways. Code in high-level languages such as
C, for example, is an excellent source of profiling infor-
mation because most algorithm kernels can be identified
as subroutines. If assembly code is available, profiling
information may be extracted by running the code on an
instruction set simulator equipped with profiling capabil-
ities, or by setting break points in key sections of code to
see how often they are executed. Profiling information
can also be estimated by studying application specifica-
tions or block-level signal flow diagrams.

Application profiling allows developers to estimate
the relative importance of each algorithm kernel bench-
mark in a particular application. Of course, it’s not a per-
fect process. If the number of benchmarks is limited to a
reasonable number, say ten or fifteen, then in many cases
there won’t be an exact match between every algorithm
found in a complex application and a benchmark. Engi-
neers will have to approximate some of the application’s
processing by using benchmarks that perform similar,
but not identical, computations. It’s also important to
note that application profiling may not identify some of
the optimizations that will be possible when assembly
code is written. For example, a programmer may notice
that a set of intermediate values used in one algorithm
kernel is also used in a later algorithm kernel. By reusing
the values, the programmer may be able to significantly
reduce the amount of processing required in the second
algorithm kernel.

A processor’s performance on an application is esti-
mated by combining the results of the benchmarks with
the results of the application profiling. Multiplying the
benchmark execution times by the number of occurrenc-
es of each benchmark (or a similar algorithm kernel)
yields an estimate of the time required to execute the ap-
plication. Comparing the application execution time es-
timates of different processors allows an engineer to
gauge the relative suitability of each processor for the ap-
plication.

Application profiling can be illustrated with the ex-
ample of a hypothetical 10-band audio graphic equalizer.
A stream of digital audio samples enters the graphic
equalizer at a fixed sampling rate. The equalizer’s output
is produced by filtering the input samples with 10 sepa-
rate cascaded biquad IIR filters. We will estimate the
time required per sample as 10 times the time needed to
perform BDTI’s eight-biquad IIR filter benchmark. Fig-
ure 2 illustrates the estimated execution times of four
16-bit fixed-point processors from Analog Devices, Mo-
torola, Lucent Technologies, and Texas Instruments.
Since the maximum allowable execution time is the re-
ciprocal of the system’s sampling rate, the execution
time estimate indicates whether or not a processor has
enough performance to implement the equalizer. The re-
sults suggest that these processors could all easily handle
stereo operation at sampling rates above 48 kHz. How-
ever, processing requirements beyond the filtering itself,
such as control code, must also be considered. BDTI's
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FIGURE 2. Execution times for graphic equalizer, in
microseconds (lower is better)

Note: Execution times are calculated for the fastest version of each processor
available in December 1999.
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Control benchmark can be used to compare processor's
relative efficiency at executing control code.

Other Considerations

Although performance is a leading consideration,
many other factors affect the choice of a DSP processor.
Application development tools, for instance, cannot be
overlooked. Without effective application development
tools, writing application software can be difficult no
matter how strong the processor’s performance. Like-
wise, chip vendor and third-party application engineer-
ing support can be invaluable when problems arise.
Additionally, designers cannot overlook physical size
considerations and must choose a processor that is avail-
able in an appropriate package.

Cost is another critical concern. There are two ways
to view the ratio of cost to performance. In some instanc-
es, additional performance beyond the required mini-
mum will remain unused. In this situation, designers
typically seek the lowest-cost processor with adequate
performance. At other times, the excess performance
may allow additional features to be added to the product.
Or, the designer may want a line of code-compatible
DSP processors with performance levels appropriate for
different members of an entire product line. In this situ-
ation, a cost-execution time product metric (the execu-
tion time of a processor multiplied by the unit cost) may
be useful. Figure 3 shows the cost-execution time prod-
uct of several processors on BDTI’s FFT benchmark.

Designers must also remember that minimizing sys-
tem cost may not always mean minimizing DSP proces-
sor cost. For example, one processor may use memory
more efficiently than a slightly less expensive processor.
If the lower memory usage can eliminate one memory
chip from the system, the more expensive processor may
minimize system cost. Designers must also weigh the
cost of engineering time and carefully consider how the
quality of application development tools will affect
product development schedules.

Lessons Learned

There is no easy way to evaluate DSP processor per-
formance meaningfully. Traditional performance units
like MIPS and MOPS are misleading and do not reflect
many relevant factors like application execution time,
memory usage, and energy consumption. Application
benchmarks, too, suffer from limitations that make fair
comparisons difficult. Fortunately, a methodology of al-
gorithm kernel benchmarking and application profiling
provides good estimates of processor performance
weighted to the target application.

We expect that DSP systems will continue to become
more sophisticated and demand greater computational
performance. At the same time, semiconductor vendors
will continue to develop more powerful DSP processors
and integrate these processors with other system compo-
nents such as microcontrollers and peripherals. As sys-
tems become more complicated and processor choices
grow, designers will need good estimates of a proces-
sor’s DSP performance. The methodology outlined
above will be an excellent starting place for calculating
these estimates.
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