

© 2018 Berkeley Design Technology, Inc. Page 1

Evaluating Intel’s RealSense SDK 2.0 for 3D Computer Vision
Using the RealSense D415/D435 Depth Cameras

By the staff of

May 2018

OVERVIEW

Today’s 2D computer vision applications have been limited by the lack of an
important third dimension: depth. Unlike 2D, 3D vision enables machines to
accurately understand shapes, sizes, distances and to maneuver in the real 3D
world. But, historically, depth-sensing cameras have been expensive and difficult
to use. Intel's RealSense D400 Series depth camera technology represents an
important milestone in that it introduces a suite of inexpensive, easy-to-use 3D
cameras for both indoor and outdoor use. Furthermore, the technology is offered
in a range of scalable hardware configurations to meet market demands from one
unit (for developers) to millions of units (for volume production).

BDTI, an independent technology analysis firm, performed a technical
evaluation of the Intel RealSense Software Development Kit (SDK) 2.0 for
developing 3D vision applications using the RealSense D415/D435 depth
cameras. In our evaluation, we sought to understand the ease of use and
developer efficiency for developing 3D vision applications using this SDK. To get
hands-on with the SDK, we developed a simple, real-world computer vision
application that uses depth information to produce real-time information about the
physical size of objects in a video stream generated by the depth camera. The
application leveraged commonly used computer vision packages, such as
OpenCV, and deep learning algorithms for object localization and detection.

Overall we had a very positive development experience and found the
RealSense SDK 2.0 to be a complete and easy-to-use development platform. The
SDK supported all of the needed building blocks to develop our application,
including good support for OpenCV. Interfacing with the depth cameras was
straightforward using the SDK’s API. Contributing to the ease of use, the entire
SDK is available in open source form, enabling developers to review and
experiment with the code.

© 2018 Berkeley Design Technology, Inc. Page 2

Contents

1. Introduction ... 2

2. About BDTI ... 2

3. The Intel RealSense D415/D435
Depth Cameras ... 2

4. What’s in the Intel RealSense SDK 2.0? 3

5. BDTI’s Evaluation Methodology 4

6. Step 1: Installation .. 4

7. Step 2: Exploration... 5

8. Step 3: Application Design and
Development ... 5

9. Step 4: Application Testing 7

10. Conclusions ... 8

11. References .. 8

1. Introduction

This report presents an independent
evaluation of the Intel RealSense SDK 2.0 using
the RealSense D415 and D435 depth-sensing
cameras. The focus of the evaluation was on the
ease of use and developer efficiency for
developing 3D-vision applications.

As a key component of the evaluation, BDTI
implemented a simple 3D application that uses
depth information to measure the height of
objects (in this case people) in a live video stream
generated by the depth camera. In addition to the
RealSense SDK 2.0, we leveraged commonly used
computer vision packages, such as OpenCV, and
deep learning algorithms for object localization
and detection.

The target audience for this report is
application developers and managers interested in
an independent perspective on the development
experience using the RealSense SDK 2.0 and the
RealSense D415/D435 depth cameras. [1]

2. About BDTI

This independent evaluation was performed
by BDTI, a technology analysis and software
development firm specializing in embedded
computer vision and deep learning applications.
BDTI has extensive experience developing,
optimizing and deploying computer vision

applications across many different platforms. In
addition to its software development work, for
more than 25 years BDTI has performed in-depth,
hands-on evaluations of numerous processors,
development kits and tools. For more information
about BDTI, please visit
https://www.bdti.com/contact. For questions
about this report, please email us at
info@bdti.com.

3. The Intel RealSense D415/D435
Depth Cameras

Today's 2D vision-based applications have
been limited by the lack of an important third
dimension: depth. Unlike 2D, 3D vision enables
machines to accurately understand shapes, sizes,
distances and to maneuver in the real 3D world.
Historically, 3D cameras have been expensive and
difficult to use. Intel's RealSense D400 Series
depth camera technology represents an important
milestone in that it introduces a suite of
inexpensive, easy-to-use 3D cameras for both
indoor and outdoor use. Furthermore, the
technology is offered in a range of scalable
hardware configurations to meet market demands
from one unit (for developers) to millions of units
(for volume production).

For developers to get started quickly, the
RealSense D415/D435 depth cameras are ready-
to-use cameras that plug into a USB port.

RealSense D415 Depth Camera

RealSense D435 Depth Camera

Figure 1: The RealSense D415 and D435
Depth Cameras

For higher levels of hardware integration,
Intel also offers the RealSense Depth Module
D400 Series. These modules feature the same

https://www.bdti.com/contact
mailto:info@bdti.com

© 2018 Berkeley Design Technology, Inc. Page 3

camera technology as the D400 cameras but
are offered in a sub-assembly module,
enabling developers to integrate depth sensing
into their hardware product. For higher
volume applications, developers can choose to
integrate the RealSense Vision Processor D4

Series chip directly into their board-level
hardware design. The D4 Series chip is also
found in the D400 Series Cameras and
Modules and computes a 3D depth map
without the use of a GPU or host processor.

Feature D415 Depth Camera D435 Depth Camera

Image sensor technology Rolling shutter Global shutter

Depth Field of View
 (H x V) for 16:9

Narrow: 63.4° x 40.4° Wide: 85.2° x 58°

Camera dimensions 99 mm x 20 mm x 23 mm 90 mm x 25 mm x 25 mm

Intended use case Precise measurement.
Narrower FOV results in
higher depth resolution.

Low light and wide field of
view. Wider FOV enables
coverage of more area,
resulting in fewer “blind spots.”

Use environment Indoor/Outdoor

Depth technology Active infrared stereo

Depth resolution Up to 1280 x 720 at 30 frames per second (fps)

Maximum range Approximately 10 meters

Figure 2: Specifications for the RealSense Depth Cameras [2]

4. What’s in the Intel RealSense
SDK 2.0?

The purpose of the RealSense SDK 2.0 is to
ease the development of computer vision
applications using depth information provided by
the RealSense depth cameras. We expect the
majority of RealSense SDK 2.0 users will have
previous experience developing computer vision
applications, but little to no experience with the
use of depth information. These developers will
want to leverage familiar tools, libraries, and
frameworks (e.g., OpenCV).

There are four major components of the
SDK: the librealsense2 library, tools, sample code
and wrappers:

 librealsense2. This library is the core
component of the SDK and provides an API
to configure, control and access the streaming
data from the depth cameras. The API allows
getting started with the camera basic
functionality using the high-level API, or get

full control of all camera settings using the
low-level API. [3]

 Tools. Provided in the SDK are two
application tools and a set of five debug tools.
The application tools include the RealSense
Viewer (enabling easy visualization of the
video and depth streams and setting the
camera’s configuration), and the Depth
Quality Tool (enabling developers to test the
camera’s depth quality).

 Sample code. There are approximately
twenty code examples demonstrating how to
use the SDK and the depth cameras for
various tasks, including aligning depth frames
to their corresponding color frames,
displaying the distance from the camera to the
object in the center of the image and how to
use the depth cameras with existing deep
neural network (DNN) algorithms.

 Wrappers. Support for a broad range of
languages and software platforms is provided
by the included wrappers, including python,

© 2018 Berkeley Design Technology, Inc. Page 4

.NET, Node.js, Robot Operating System
(ROS), LabView, Point-Cloud Library (PCL)
and the Unity gaming platform.

Intel has made the entire SDK and all of its
major components available in source code form
under the Apache 2.0 license and hosted the SDK
on GitHub.

5. BDTI’s Evaluation Methodology

The focus of BDTI’s evaluation was to
explore the overall development experience,
including ease of use and developer efficiency.
The evaluation explored topics such as:

 How hard is it to get things working out of
the box?

 How hard is it to develop a new 3D vision
application using the SDK?

 What are the SDK’s strengths and weaknesses
viewed through the eyes of someone trying to
develop a depth-sensing computer vision
application?

We did not focus on the technical
characteristics of the cameras. For example, we
did not measure things like the RMS depth
sensing error of the cameras, their sensitivity
under different lighting conditions or their color
correctness.

For a realistic assessment of the overall
development experience, we followed a typical
developer’s journey to develop a new application
with a new SDK. The journey included
installation, exploration, application design,
development and testing. To put the SDK
through its paces in a real-world use case, BDTI
developed a simple 3D application that uses depth
information to measure the height of people in a
live video stream generated by the depth camera.
The people detector we implemented is deep-
learning based and could be retrained to detect
other objects; one can imagine this application
being useful in several types of use cases, such as
in a warehouse setting where packages over a
certain height are flagged for a different type of
transport, or in an amusement park setting where
children shorter than 36" are not permitted on the
ride.

Our evaluation was performed by a BDTI
engineer experienced in computer vision

application development, but with no prior
experience with depth cameras.

6. Step 1: Installation

For our hardware platform, we chose to use
one of our existing PCs with 32 GB RAM and a
USB 3.0 port. While we did not evaluate other
hardware platforms, it is notable that Intel offers
unsupported versions of the SDK on smaller
platforms such as the Raspberry PI 3 Model B and
Android. To enable extensibility, full source code
for the SDK is available for developers needing to
support other platforms.

Intel states that the RealSense SDK 2.0 is fully
supported on Microsoft Windows and Linux
platforms; in addition, there is limited support for
macOS. We decided to test the implementation
under Linux. Unfortunately, we immediately ran
into problems. We discovered that our Linux
kernel was newer than what was then supported
by the SDK. While there is SDK documentation
to inform the developer of the supported kernel
versions, we believe that Linux kernel
compatibility issues will likely be a recurring
problem for developers. According to Intel, the
RealSense SDK 2.0 requires that Intel make
modifications to the Linux kernel drivers. Since it
takes time for the Intel team to add the
modifications whenever the newest Linux kernel
is released, the version of kernel supported in the
SDK will tend to lag the version of the kernel in
the latest Linux distribution. Intel reports that a
more universal solution for this type of Linux
installation problem is planned.

After installing an older Linux kernel, we
completed configuring our system by plugging the
D415 depth camera into our USB 3.0 port. We
then launched the Viewer application (included
with the SDK), which enabled us to visualize
video streams with depth information. We
repeated the process using the D435 depth
camera. Both worked fine. Based on our
experience, developers should have no trouble
installing the system and visualizing real-time
video and depth frames in less than a day.

7. Step 2: Exploration

With a working 3D camera and basic software
functionality demonstrated, we began exploring
the SDK’s tools and sample applications.

© 2018 Berkeley Design Technology, Inc. Page 5

Included in the SDK are two application tools
(RealSense Viewer and Depth Quality Tool) and
five debug tools. We started our evaluation with
the Viewer tool, which allows users to stream and
visualize RGBD streams [i.e., RGB images plus
depth (“D”) information for each pixel] from the
camera easily and quickly. We found this tool to
be easy to use, and using it, we were able to
quickly get depth and color images displayed on
the screen.

Intel has organized the provided code samples
into three categories: basic, intermediate and
advanced. We ran samples from each of these
three categories.

 rs-capture (Basic): This sample code
demonstrates how to configure the camera for
streaming and rendering depth and RGB data to
the screen. We ran this sample with no problems.
For most applications, developers should explicitly
align the depth and color streams prior to running
this sample code (see rs-align).

 rs-align (Intermediate): This sample code
demonstrates the alignment of the depth frames
to their corresponding color frames. We ran this
sample with no problems. However, this tool
could be made more intuitive for new developers
by showing the color and depth frames before and
after alignment and also to show the alignment of
the color frame to the depth frame and vice versa.

 rs-measure (Advanced): This sample code
lets developers measure distance between two
points in the physical world. Included in this
example are a half dozen critical measurement
concepts and details of performance techniques
such as the use of multiple threads of execution.
This sample code ran well with no problems.
Entry-level developers would benefit from a
simplified version of this sample demonstrating
basic 3D measurement concepts.

We were pleasantly surprised to see the “all-
in” use of open source for the RealSense SDK 2.0.
This is especially attractive for computer vision
application developers who are already avid users
of open source tools and libraries such as
OpenCV. Making all of the RealSense SDK 2.0
code available in source code, using the friendly
and well known Apache 2.0 license, removes
licensing hurdles and makes it easy for developers
to review and experiment with the code. The

RealSense GitHub developer portal is well
organized with basic documentation, including
theoretical (e.g., technical white papers), practical
(e.g., troubleshooting guide and API How To) and
reference material (e.g., API architecture, frame
management and camera-specific topics).

However, with no prior experience with depth
cameras, developing a 3D vision application is
non-trivial. We experienced a longer-than-desired
learning curve on the use of depth cameras. It was
a challenge to learn the many configuration (e.g.,
color and depth frame alignment) and
measurement concepts fundamental to depth
cameras and the implications for constructing a
3D vision application. Developers would benefit
from the addition of a well-organized series of
basic tutorials that are designed to rapidly onboard
developers to the RealSense platform. These
tutorials should include guided learning paths for
entry to advanced developers covering topics
ranging from prerequisite educational materials for
depth cameras to more advanced topics specific to
each of the supported environments and
platforms (e.g., OpenCV, ROS, LabVIEW and
Unity).

We would also have appreciated more
advanced tutorials that offered guided learning
paths specific to vertical application solutions
(e.g., robotics, drones, AR/VR, etc.). These
advanced tutorials would accelerate the time-to-
first application for developers working in these
domains. Intel stated it’s planning on expanding
their tutorials to meet the needs of both
experienced and novice developers.

8. Step 3: Application Design and
Development

As mentioned, the application we decided to
develop identifies people in an image and
measures their height in real time, using depth
information. Now, you might wonder, why do we
need a depth camera to do this? Can’t you just see
how tall a person is (in pixels) and go from there?
The reason is that, without depth information, you
have no way to know how far away a person is
from the camera. As a result, a short person
standing closer to the camera might appear to be
taller than a tall person standing further away. By
combining both RGB data (i.e., images from the

© 2018 Berkeley Design Technology, Inc. Page 6

camera) and depth information, we can accurately
determine a person’s height.

The core functionality of our simple height
detection application includes interfacing with the
depth cameras to receive live video and depth
streams, identifying people in the image, detecting
each person's distance from the camera and then
calculating the person’s height.

With this application functionality in mind, we
started thinking about how we might implement
it. The popular OpenCV library seemed like a
good starting place as it enables developers to

quickly implement and test computer vision
algorithms. Fortunately, it turned out that
interoperability between the SDK and OpenCV is
well designed. For example, converting a depth
frame from the camera into OpenCV matrices is
well documented in the OpenCV sample code
included with the SDK. With the decision that our
application would leverage OpenCV, we were able
to complete our initial design and construct our
high level architecture diagram as shown in
Figure 3.

Figure 3: Diagram of the Application Architecture

Now that we had an overall application
design, we were ready to start writing the code.
The key functions required by the application
include interfacing with the depth camera to
capture the color and depth frames, detecting
people, determining distance, calculating heights
and rendering output.

Our first task was to interface with the depth
camera. The RealSense depth cameras can capture
color and depth frames continuously. The
RealSense SDK 2.0, with the librealsense2 library,
provides the API functions needed to align the
color and depth frames. The alignment is
important because the object detection works on
color frames and we wanted to measure the
distance of the same object on depth frames.
Using the API, our application was able to
configure the depth camera, capture the color and
depth frames and then align them. We then
converted the frames to OpenCV matrices.

The next function we needed to code was the
object detector. Selecting the appropriate object
detector that meets the accuracy, performance and
computational constraints of an application can be
a very involved and time-consuming process.

Fortunately, OpenCV includes a deep learning
module (DNN) with support for a number of
deep learning frameworks, including Caffe,
TensorFlow and others. This DNN API works
with pre-trained deep learning models. Sample
code included in the SDK demonstrates the
interoperability among the depth camera,
OpenCV, and OpenCV’s DNN API to localize
and detect an object in the image, as well as how
to detect the object’s mean distance from the
camera. Our application called the OpenCV DNN
API to detect people using a pre-trained Caffe
model (MobileNet + SSD). [4]

Now that we had developed our people
detector, it was time to code our distance
detection. Each pixel in the depth frame includes
the distance (in meters) from the camera. Since
the color and depth frames were aligned, we had
the distance for all the pixels within the bounding
box. The challenge was to find which pixels
belonged to the person and which pixels were
associated with other objects in the image. We
found the SDK examples for distance
measurement were simplified and results could be
obscured by the surrounding objects. The
examples used either the distance of the center

© 2018 Berkeley Design Technology, Inc. Page 7

pixel or the mean distance of a region of interest
(ROI) that was deemed the distance of the object.
Unfortunately, these techniques left us with an
inconsistent distance measurement. To improve
the consistency of the distance measurement, we
implemented a more robust way to measure the
distance of each detected person. Each bounding
box was an ROI, and we computed a histogram
for that ROI on the depth frame. The distance of
the histogram peak was deemed the distance of
the detected person. We found this approach to
be more resistant to occlusions and background
pixels.

The final piece of functionality we needed to
code was our height calculation and output
rendering stage. This stage included drawing a
bounding box around each detected person and
calculating the height of the bounding box (in
pixels). Applying our formula, based on the
distance (in meters) of the person in the bounding
box, the height of the bounding box (in pixels),

and the camera’s focal length (in pixels), we could
then compute the height of the person (in meters).
This assumes that the height of the person is
represented by the height of the bounding box.
The focal length (in pixels) is one of the camera’s
intrinsics, i.e., a parameter determined by the
camera optics and components. The RealSense
SDK 2.0 provides an API to access such
intrinsics. See Figure 4 and the formula below.

PH = (D * bh)/f; where:

 PH = Person Height (meters)

 D = Distance between the camera and the
object (meters)

 bh = Bounding box height (pixels)

 f = Focal length in pixels (generated by the
SDK as shown in the referenced “API How
To”) [5]

Figure 4: Person height calculation

9. Step 4: Application Testing

As is typical in developing any application, we
developed code and tested concurrently. Our
testing objective was to validate our code for these
four components: receiving and displaying RGBD
streams, object localization and detection (people),
distance measurement and calculating the height
of the bounding box. Our tests were performed
indoors with the D415 and D435 depth cameras.
We had people standing in front of the camera at
certain distances. Our application detected each
person and displayed the measured distance on
the screen and confirmed with the ground truth
distance. To get an accurate height measurement,
people had to stand away from the camera so that

their whole bodies were seen by the camera. With
the D415 depth camera, our application displayed
the height of each person, which was then verified
with the ground truth. When we repeated the
above test using the D435 camera, our application
displayed an incorrect height of each person.
Despite receiving technical support from Intel, we
were ultimately unable to determine the root cause
of this problem in the time we had available. For a
final implementation using the D435, we would
need either to troubleshoot the problem further or
“back calculate” the focal distance f used in our
height calculation formula.

© 2018 Berkeley Design Technology, Inc. Page 8

10. Conclusions

Overall, we had a very positive development
experience and found the RealSense SDK 2.0 to
be an easy-to-use development platform. The
SDK supported all the needed building blocks to
develop our application, including good support
for OpenCV. Interfacing with the depth cameras
was straightforward. Based on our experience,
developers should have no trouble installing the
system and visualizing real-time video and depth
frames in less than a day.

Contributing to the ease of use, the entire
SDK is available in open source form, enabling
developers to review and experiment with the
code. Moreover, developers can build the SDK
from source code to target non-supported
hardware platforms.

That said, there is more work to do to
improve the SDK's out-of-box experience, as we
encountered problems with installing the SDK on
our standard Linux platform. More significantly,
we experienced a longer-than-desired learning
curve because we had no prior experience with
depth cameras. Our developer, who was new to
depth cameras, would have greatly benefited from
a well-organized series of basic tutorials designed
to rapidly onboard developers to the RealSense
platform, including prerequisite educational
materials for depth cameras. Given that 3D
sensing is still relatively new, we expect that this
will be the case for many developers.

The other dimension of developer experience
that we explored is developer efficiency. For us,
efficiency means how quickly a developer can
develop a high-quality 3D vision application that
meets his business requirements using the
contents of the SDK. For our simple 3D
application, the SDK aided our developer
efficiency by offering a high-level API for
interfacing with the depth camera, making our
work to interface to the depth camera simple.
Another efficiency boost came from the SDK's
interoperability with OpenCV, an extensive library
of functions that enables developers to easily
implement algorithms for vision-based
applications. However, we recognize that our
simple 3D vision application is not representative
of the sophisticated solutions required by the
emerging 3D markets. Missing from the SDK are
a series of advanced tutorials that offer guided

learning paths specific to vertical application
solutions (e.g., robotics, drones, AR/VR, etc.).
Developer efficiency, and thus time-to-deployed
application, would be greatly improved for
developers of these types of applications.

11. References

[1] https://realsense.intel.com

[2] https://software.intel.com/en-
us/realsense/d400

[3]
https://github.com/IntelRealSense/librealsense/
wiki/API-How-To

[4] A Caffe implementation of a MobileNet-SSD
detection network:
https://github.com/chuanqi305/MobileNet-SSD

[5] Get Video Stream Analytics:
https://github.com/IntelRealSense/librealsense/
wiki/API-How-To

https://realsense.intel.com/
https://software.intel.com/en-us/realsense/d400
https://software.intel.com/en-us/realsense/d400
https://github.com/IntelRealSense/librealsense/wiki/API-How-To
https://github.com/IntelRealSense/librealsense/wiki/API-How-To
https://github.com/chuanqi305/MobileNet-SSD
https://github.com/IntelRealSense/librealsense/wiki/API-How-To
https://github.com/IntelRealSense/librealsense/wiki/API-How-To

