
Developing a Prototype Mask Detecting Smart Camera
Using the NVIDIA Jetson Nano:

A Hands-On Evaluation
By the Staff and Partners of

March 2021

Overview

This report presents an independent, hands-on evaluation of using the NVIDIA Jetson Nano, an
embedded processor designed for vision and AI/ML, to prototype a real-world edge AI application:
MaskCam, a smart camera capable of estimating the number and percentage of people wearing face
masks in its field of view. The evaluation was led by BDTI, an independent technology analysis firm,
working closely with its partners, Tryolabs S.A. and Jabil Optics.

Our evaluation sought to answer questions such as: How difficult is it to create an application using the
Jetson Nano andNVIDIA’s tools and SDKs? How complete is NVIDIA’s support ecosystem, including
documentation and community presence? How much effort is required to integrate the Jetson Nano
with off-the-shelf hardware available through NVIDIA’s hardware partners? Where did things work well,
and where did we encounter snags or sharp edges?

We present our developer journey, from product concept to prototype. We describe the requirements
and specifications for MaskCam, the hardware and software architecture we chose, and the steps
required to implement them on both the Jetson Nano Developer Kit and an off-the-shelf carrier board
with a Jetson Nano system-on-module (SOM). Working with Jabil we provide cost estimates for
manufacturing MaskCam in volume.

Overall, our team was impressed with the Jetson Nano and its ecosystem. The quality documentation
and examples for the NVIDIA SDKs, the breadth of the hardware partners and modules available to be
used with the Jetson Nano, and the containerization tools from balena all facilitated rapid development
of our smart mask detection camera. The fact that we were able to conceptualize, design, and create a
production-ready prototype of MaskCam in a short time with a small team speaks to this. While there
were certainly challenges, we were able to overcome all of them.

If you are interested in MaskCam, we encourage you to try it out: the MaskCam source code is
available under the MIT License at https://github.com/bdtinc/maskcam. If you have a Jetson Nano
Developer Kit and a USB web camera, you can get the MaskCam software running on your system
with two simple commands described in the README. Please feel free to email maskcam@bdti.com if
you have questions.

© 2021 Berkeley Design Technology, Inc. 1

https://github.com/bdtinc/maskcam
mailto:maskcam@bdti.com

1. Introduction
This report presents BDTI’s independent, hands-on evaluation of using the NVIDIA Jetson Nano
to prototype a real-world edge AI application: a smart camera capable of estimating the
percentage of people wearing face masks in its field of view.

For the evaluation, BDTI and its partners created a mask detection smart camera based around
the Jetson Nano and worked through the development process from concept to production
prototype. We leveraged the tools, SDKs, and hardware resources available from the NVIDIA
Jetson ecosystem and recorded our experiences throughout the developer journey.

This evaluation seeks to provide:
● A real-world example of using the Jetson Nano in an edge-based machine learning

application, from concept to (almost) production
● A sense of the effort and learning curve required to create a smart camera product using

the Jetson Nano
● A qualitative analysis of our experiences with the Jetson Nano and its ecosystem

The target audience for this report is product developers, including engineers, engineering
managers, and product managers, interested in understanding the experience of developing a
Jetson Nano-based product with computer vision and machine learning functionality.

The application code and design details for the project have been open-sourced under the MIT
License on GitHub and are available at https://github.com/bdtinc/maskcam.

2. About BDTI, Tryolabs, and Jabil Optics
This independent evaluation was led by Berkeley Design Technology, Inc. (BDTI), a technology
analysis and software development firm specializing in embedded computer vision and deep
learning applications. BDTI has extensive experience developing, optimizing and deploying
computer vision applications across many different platforms. In addition to its software
development work, for almost 30 years BDTI has performed in-depth, hands-on evaluations of
numerous processors, development kits and tools. For more information about BDTI, please
visit https://www.bdti.com/. For questions about this report, please email us at info@bdti.com.

In this evaluation BDTI worked closely with two partners, Tryolabs S.A. and Jabil Optics:

Tryolabs is a machine learning consulting company that focuses on transforming businesses by
building and deploying AI-powered solutions. With more than a decade of experience in the
field, Tryolabs has helped over 110 companies transform and embrace solutions based on
leveraging data and applying state-of-the-art AI technology. The Tryolabs team is composed of
experts in applying computer vision, natural language processing, and predictive analytics
techniques. From the discovery of opportunities, R&D to actual production implementation,

© 2021 Berkeley Design Technology, Inc. 2

https://github.com/bdtinc/maskcam
https://www.bdti.com/contact
mailto:info@bdti.com

Tryolabs helps clients increase revenue, reduce costs and generate a competitive advantage
using AI. For more information about Tryolabs, please visit https://tryolabs.com.

Jabil Optics is recognized worldwide as a leader in advanced optical design and manufacturing.
With 170 employees across four locations, Jabil Optics provides advanced optical design,
process development, supply chain management and precision manufacturing services to
realize its customers’ product goals. Jabil Optics experience is built on decades of solving
complex optical problems for our customers in the automotive, consumer electronics, healthcare
and industrial markets. Jabil Optics is part of the larger Jabil Inc., a worldwide manufacturing
concern with 100 plants in 30 countries. For more information about Jabil Optics, please visit
https://www.jabil.com/capabilities/optics.html.

This project was funded by NVIDIA but was executed independently. NVIDIA personnel
received periodic briefings on our progress and in some cases offered suggestions for
approaches to try. NVIDIA personnel reviewed a pre-publication draft of this report and were
given the opportunity to offer factual corrections. That said, ultimately, all technical decisions in
this project were made by BDTI and its partners, and BDTI made the final decisions on what
went into this report.

3. The NVIDIA Jetson Nano and its Ecosystem
The NVIDIA Jetson family comprises both developer kits and system-on-modules (SOMs)
designed for edge AI applications and devices where power and space are limited. Table 1
summarizes the Jetson family [1]. It includes the 128 CUDA-core Nano, the 256 CUDA-core
TX2 series, the 512 CUDA-core AGX Xavier, and the 384 CUDA-core Xavier NX. The Jetson
processors include hardware-based accelerators for speeding up various parts of the AI
pipeline: a GPU for accelerating inference and vision, a programmable vision accelerator, a
video image compositor, and video codecs for accelerating multimedia. NVIDIA provides access
to these accelerators via user level libraries for end-to-end AI acceleration.

The Jetson Nano is the lowest cost family member and features four Arm Cortex-A57 cores and
a GPU based on NVIDIA’s Maxwell architecture. The Jetson Nano Developer Kit [2] combines
the Nano Module with an NVIDIA-built carrier board featuring a wide range of interfaces,
including MIPI, USB, HDMI, ethernet, and GPIO. The Jetson Nano module is pin-compatible
with the Xavier NX and the just-released TX2 NX Modules, providing an upgrade/downgrade
path depending on budget and performance requirements.

© 2021 Berkeley Design Technology, Inc. 3

https://tryolabs.com
https://www.jabil.com/capabilities/optics.html

Nano Series TX2 Series
Xavier NX AGX Xavier

Nano 2 GB Nano 4 GB TX2 4 GB TX2 TX2i TX2 NX

GPU 128-core NVIDIA Maxwell
GPU 256-core NVIDIA Pascal GPU

384-core
NVIDIA Volta
GPU with 48
Tensor Cores

512-core
NVIDIA Volta
GPU with 64
Tensor Cores

CPU Quad-core Arm Cortex-A57
MPCore processor

Dual-core Denver 2 64-bit CPU and quad-core Arm
Cortex-A57 MPCore processor

6-core NVIDIA
Carmel

ARMv8.2 64-bit
CPU 6 MB L2 4

MB L3

8-core NVIDIA
Carmel

Armv8.2 64-bit
CPU 8 MB L2

4 MB L3

Memory
2 GB 64-bit
LPDDR4
25.6 GB/s

4 GB 64-bit
LPDDR4

25.6 GB/s

4 GB
128-bit

LPDDR4
51.2 GB/s

8 GB
128-bit

LPDDR4
59.7 GB/s

8 GB 128-bit
LPDDR4 (ECC
Support) 51.2

GB/s

4 GB 128-bit
LPDDR4
51.2 GB/s

8 GB 128-bit
LPDDR4x 51.2

GB/s

32 GB 256-bit
LPDDR4x

136.5 GB/s

Power 5 W, 10 W 7.5 W, 15 W 10 W, 20 W 7.5 W, 15 W 10 W, 15 W 10 W, 15 W, 30
W

Video
Decode
(H.265)

1x 4K60
2x 4K30

4x 1080p60
8x 1080p30

2x 4K60
4x 4K30

7x 1080p60
14x 1080p30

2x 4K60
4x 4K30

12x 1080p60
16x 1080p30

2x 8K30
6x 4K60

26x 1080p60
72x 1080p30

DL
Accelerator n/a 2x NVDLA Engines

Vision
Accelerator n/a 7-Way VLIW Vision Processor

Connector n/a

69.6 mm x 45
mm

260-pin
SO-DIMM
connector

87 mm x 50 mm
400-pin connector

69.6 mm x 45
mm

260-pin
SO-DIMM
connector

69.6 mm x 45
mm

260-pin
SO-DIMM
connector

100 mm x 87
mm

699-pin
connector

Dev Kit
Cost $59 $90 No longer available (end of life) See Xavier

NX Dev Kit $397 $699

Module
Cost n/a $129 qty 1

$99 qty 1K $299 qty 1 $479 qty 1 $849 qty 1 $199 qty 1 $479 qty 1 $999 qty 1

Table 1: NVIDIA Jetson family members and characteristics.

The lowest cost version of the Jetson Nano is the Nano 2 Gbyte Developer Kit. Aimed at
hobbyists and educational users, it is available for $59, but not available as a SOM. The 4
Gbyte Jetson Nano Developer Kit used in this project is priced at $90, well below the rest of the
Jetson family, and is available as both a developer kit and SOM.

Note that NVIDIA’s Developer Kits are not intended to be used for production. Rather, NVIDIA
expects product makers to purchase SOMs (which they call “modules”) for production use.
These modules must be used with a carrier board, which may be either custom designed or
available off the shelf from an ecosystem partner. NVIDIA does not sell individual Jetson
processor chips, meaning that Jetson Modules are the only path available for volume
manufacturing of Jetson-based products. The Jetson Nano module used in this project is $129
in unit quantities, and $99 in quantities of 1,000.

The default software environment for the Jetson family is JetPack SDK [3]. JetPack is based on
Ubuntu 18.04 Linux and includes the NVIDIA Jetson Linux Driver Package (L4T), a CUDA-X

© 2021 Berkeley Design Technology, Inc. 4

https://developer.nvidia.com/embedded/jetpack

software stack that includes NVIDIA developer tools, and the DeepStream SDK framework used
in this project.

The Jetson family is supported by a rich ecosystem of dozens of hardware, software, sensor,
and developer tools partners.

4. Our Application: A Mask Detecting Smart Camera
The COVID-19 pandemic has created a need for understanding the number of individuals
wearing or not wearing face masks in public areas. Our application, MaskCam, addresses this
need by detecting and counting masked and unmasked individuals in a broad area of coverage,
and reporting statistics on the overall ratio of mask wearers to a remote web server.

MaskCam is intended to help both public and private organizations understand mask
compliance. For example, a local transportation authority might use MaskCam to understand
the percentage of people wearing masks on a train station platform at rush hour. Similarly, it can
help a store manager see the week-over-week increase in mask wearers after they implement a
“masks required” policy. Ultimately, MaskCam allows business owners, public officials, and other
users to be better informed in their efforts to limit the spread of COVID-19.

In an effort to address the demands of the application, we identified both top-level and detailed
requirements, and from those, we created our product specifications.

Top-Level Requirements:

● Mask Detection: Determine percentage of mask wearers in an area from a surveillance
camera perspective

○ Count and track the number of people in a large viewing area (90°+ horizontal
field of view, at up to 35 feet from the camera)

○ Determine whether individuals are masked or unmasked
○ Calculate the overall ratio of masked people to unmasked people

● Informatics: Report statistics on number and percentage of mask wearers over time to
the cloud; the resulting statistics will be viewable via web browser

● Streaming: Stream camera view with detection results and live statistics over IP
● Video storage: Optionally store video for playback purposes on a customer-supplied SD

card
○ Records processed video (showing person and mask detections) to on-device

storage medium
○ Indicates periods of interest in the video (e.g., unusually large number of people

or very low mask-wearing percentage)
○ Maximum length of recorded video depends on size of SD card

● Environments: Able to work in a variety of visual and physical environments
○ Indoors and outdoors
○ Daytime (and nighttime with sufficient external lighting)

© 2021 Berkeley Design Technology, Inc. 5

https://developer.nvidia.com/embedded/community/ecosystem
https://developer.nvidia.com/embedded/community/ecosystem

○ High-angle perspectives and face-on perspectives
● Hardware: Based on the Jetson Nano module, but may upgrade to other Jetson modules

if more compute is needed
● Cost: Total BOM and manufacturing cost of approximately $300

Product Specifications

Based on the above requirements, we created the specifications shown in Table 2.

Item Specification

Processor and memory NVIDIA Jetson Nano SOM (4x Arm Cortex A57, 128-core
Maxwell GPU, 4 Gbytes RAM, 16 Gbytes eMMC)

WiFi 802.11b/g/n

LTE Optional via mini-PCIe card (since some installation
environments may have neither wired Ethernet nor WiFi)

Power budget 15 W (10 W to Jetson Nano, 5 W to peripheral components)

External power Supplied via barrel connector or POE (since some environments
have POE and some don’t)

Wired Ethernet 1000 Mbit/sec

SD card Optional, removable SD card for video storage

Audio None

Camera resolution 4K @ 30 FPS for video (inference can be performed at 5-10
FPS)

Camera field of view 90 degrees or greater

Table 2: MaskCam product specifications.

The choice of image sensor resolution is worth a few words of explanation. Because we want
MaskCam to work in a variety of visual environments, and to be able to detect masks at a
distance, as well as to provide headroom for additional pre- or post-processing we specified a
4K image sensor. While a lower resolution sensor would have been suitable for the inference
being performed, we determined that the cost savings didn’t justify the reduction in capability.

© 2021 Berkeley Design Technology, Inc. 6

5. Evaluation Methodology
BDTI began with the product concept for MaskCam and approached the development process
in a typical fashion: we created specifications to define the product’s functionality and features,
and then worked on getting a “lab prototype” working with the Jetson Nano Developer Kit. We
then developed a rapid time-to-market version using off-the-shelf hardware components. Finally,
we researched options for designing a cost-down high volume product.

Overall, we divided the project into three phases:

In phase 1, we decided on requirements and specifications and designed the product, exploring
the NVIDIA ecosystem for relevant Jetson hardware, software, and services, and set cost and
performance targets. In particular, we:

● Decided on requirements and created specifications, including performance and cost
targets

● Researched NVIDIA offerings, the NVIDIA ecosystem, and open source to identify
relevant resources, e.g., cameras, boards, tools, algorithms, software components and
frameworks, and services

● Evaluated the most promising resources to understand their capabilities and limitations;
and then selected resources

● Identified an off-the-shelf mask detection algorithm and dataset to be used
● Designed the hardware/software architecture of the system, considering interfaces,

capabilities, and limitations of chosen resources

In phase 2, we implemented core product functionality for the mask detector using relevant
Jetson tools. In particular, we:

● Obtained the chosen resources (algorithm, test data, boards, cameras, tools,
frameworks, software components, etc.) and gained familiarity with them

● Brought up and characterized each component
● Created the full system, integrating components and optimizing where possible
● Verified functionality, debugging as needed
● Measured performance and briefly optimized to meet performance specifications

In phase 3, we defined a path to volume production that meets the cost target. In particular we:
● Engaged with a hardware design and manufacturing partner
● In consultation with the hardware partner, determined the extent of custom hardware

design required to meet the cost target
● Obtained detailed proposal and cost quote for custom hardware design, manufacturing

NRE, and volume production for quantities of 10K and 100K units per year

Our team comprised:
● A project lead (25% time)
● A hardware lead (50% time)
● An embedded software and ML lead (100% time)

© 2021 Berkeley Design Technology, Inc. 7

● A containerization software engineer (50% time for two months)
● A cloud software engineer (100% time for two weeks)

We worked on the project for roughly four months (November 2020 - February 2021, with a
break for the holidays). During this time we were able to go from concept to working prototype,
with a clear path to production.

In the process, we recorded our experiences working with the Jetson Nano and its ecosystem
throughout development. We focused on topics such as:

● How difficult is it to create an application for the Jetson Nano using NVIDIA’s tools and
SDKs?

● How complete is NVIDIA’s support ecosystem, including documentation and community
presence?

● How much effort is required to integrate the Jetson Nano with off-the-shelf hardware
available through NVIDIA’s hardware partners?

● Where did things work well, and where did we encounter snags or sharp edges?

6. Software Development

Initial Implementation

MaskCam’s initial face mask detection algorithm was based on an existing algorithm developed
by Tryolabs [4]. This algorithm was written in Python and designed to run on desktop GPUs. It
used a two-stage inference process: it performed pose estimation to locate faces and then
applied image classification to classify whether detected faces were masked or unmasked. It
also used a Tryolabs-developed open source object tracker called Norfair to follow detections
across the scene. For each person that walks past the camera, Norfair tracks their face
detection box as it moves across the scene. It only counts the individual once, rather than
counting them in every frame. Then, if the detection score for their face is above a fixed
threshold for several frames, a voting system decides if the person is wearing a mask or not, or
if the face is not visible enough to tell. This process allows us to leverage information from the
whole video sequence instead of just individual frames. The final output of this algorithm is a
count of the number of individuals who have passed by the camera and the percentage that
were wearing a mask.

This algorithm, while accurate, required too much compute to run on the Jetson Nano as
written. As part of moving to the Nano, we simplified the algorithm to use a single-shot object
detection model, recognizing the following object classes:

● Face with mask
● Face without mask
● Face not visible
● Misplaced mask

© 2021 Berkeley Design Technology, Inc. 8

https://github.com/tryolabs/norfair

The face not visible class is needed for tracking purposes, since we need to follow heads even if
they are not looking at the camera at times.

As there was no previous object detection dataset with these categories, we manually curated a
dataset of mask training images by downloading images from the Internet and also extracting
frames from downloaded videos. We labeled the images using CVAT, an open-source image
labeling tool. This dataset contains 351 training images with 6,843 annotations across all
classes, and that’s what we used during most of the development process. After the
development process was largely finished, we expanded this dataset by combining it with other
publicly available sources, as described at the end of this section.

Model Selection

We evaluated three different models as candidates for our use case. The main tradeoff on each
individual model was the input resolution vs. inference time. We tested MobileNetV2+SSD,
YOLOv4-full, and YOLOv4-tiny [5] at different input resolutions and batch sizes. We converted
the models to TensorRT, ran them on the Jetson Nano, and measured the engine inference
time, excluding any pre-processing (like resizing frames) or post-processing (like non-maxima
suppression). The results are shown in Table 3. The inference FPS is the pipeline bottleneck,
since we know we can’t improve it by parallelizing any other processing tasks.

Model
Input

Resolution Batch Size
Jetson Nano FPS

(Inference)

MobileNetV2+SSD
300x300

1 25

8 35

1024x608 Any 6

YOLOv4-full 608x608 Any 2.5

YOLOv4-tiny
608x608 Any 21

1024x608 Any 14

Table 3: Inference FPS on Jetson Nano for examined neural network models and
input resolutions.

One result that was clear after these experiments was that the batch size only made a
difference at small input resolutions on the Jetson Nano. For larger input resolutions, batching
frames to perform inference did not reduce runtime compared to processing frames individually.

From Tryolabs’ previous experience developing a tracking algorithm (Norfair), we knew that we
can track objects in real time video streams if the detection model can run at more than 10 FPS.

© 2021 Berkeley Design Technology, Inc. 9

We can process a 30 FPS video by performing inference once every three frames and then
interpolating the bounding box coordinates for skipped frames using the tracker. However, if the
model inference runs at lower than 10 FPS, it’s harder for the tracker to follow detections across
frames, because there is a larger change in position between inferenced frames.

We evaluated the detection accuracy quantitatively on still test images, and qualitatively on
video images. This latter was important because we needed to consider the performance on
video sequences, leveraging the information of all frames by using the whole pipeline (i.e., after
the tracker, score thresholding, and voting system). The qualitative accuracies obtained with
MobileNet and YOLO-tiny were similar for the same input resolutions. YOLO-full had
considerably better accuracy, even at smaller resolutions, but was too slow in all cases. Only
YOLOv4-tiny with a 1024x608 resolution runs fast enough to allow matching detections across
frames in real-time, so we selected that model for inference.

Boosting Performance on Jetson Nano: DeepStream

While testing different models, we needed a research-friendly environment for fast prototyping,
so we used OpenCV to handle all video processing. All of our codebase and libraries run on
Python (including Norfair, Tryolabs’ open-source tracking library). However, since we were not
running the model inference in parallel with the other needed tasks (e.g., video
decoding/encoding, updating the tracker, and drawing), there was a considerable overhead
above the bottleneck of 14 FPS for the selected model. This meant that in aggregate, our
pipeline would run at only 9 FPS.

Taking this into account, we migrated our whole codebase to run on NVIDIA’s DeepStream SDK
for intelligent video analytics, which is written in C/C++ but provides Python bindings. This
platform uses a different paradigm than our OpenCV approach: all the video processing tasks
are implemented using Gstreamer (a software framework for multimedia applications) in which
most operations are accelerating using the Jetson Nano’s GPU. Python is used to create all the
elements in this pipeline and has access to lightweight metadata structures, from which it can
read information like detected objects, or provide information in order to create custom drawings
into the video pipeline.

Fortunately, an implementation of YOLOv4 is available as a plugin for GStreamer, so integrating
our model and the Python tracking and statistics code into this pipeline was reasonably
straightforward. Since we only needed access to the detected object’s coordinates and classes,
all of the costly video processing tasks are handled entirely inside the accelerated pipeline. We
only use a high-level language like Python to update the tracker information, collect statistics,
and provide the custom drawings for the resulting bounding boxes, as shown in Figure 1.

© 2021 Berkeley Design Technology, Inc. 10

https://github.com/tryolabs/norfair
https://developer.nvidia.com/deepstream-sdk
https://gstreamer.freedesktop.org/

Figure 1: Our custom detector and tracker running as a DeepStream pipeline.

Also, GStreamer uses queues and threads to parallelize the execution on different elements of
the pipeline, so we achieved a performance of 14 FPS out of the box, which was the known
inference bottleneck. We didn’t have to implement any threading on the Python side at this
point.

Migrating the inference model to DeepStream and understanding the basics of the GStreamer
pipeline took approximately one week. Integrating our Python tracker, voting system, and
custom bounding box drawings added another week.

These were the most fundamental building blocks we needed for our application, and migrating
them was much easier than expected. The fact that our model was already implemented as a
plugin for DeepStream and that we could use the Python bindings to integrate our tracking
library were key to this migration.

In the next section, we describe how we overcame the challenges that arose when trying to
modify this pipeline dynamically to implement the rest of the application requirements.

Multiprocessing

Although MaskCam’s determination of mask/no-mask and the resulting statistics are computed
at the edge, our system needs to be able to report this information to a central server; we use
the MQTT protocol to accomplish this. Additionally, MaskCam needs to provide a way for
camera owners to review videos and detections when required. For the latter requirement, we
needed to both activate streaming on demand and save video chunks in the device file system
to be downloaded later.

© 2021 Berkeley Design Technology, Inc. 11

Implementing all of the above using a single GStreamer pipeline turned out to be cumbersome
and unstable, mainly because we needed to add and remove elements dynamically without
interrupting the video processing.

Figure 2: MaskCam software architecture, processes and their relationships.

Instead, we split the code into different processes, as shown in Figure 2. The inference process
handles the object detection, tracking, and drawing and outputs video in the form of UDP
packets. The streaming and file-saving processes, whenever turned on, read these UDP
packets and generate an RTSP streaming server or save them as .mp4 video files. There’s also
a static file server to allow downloading the saved mp4 videos. These videos are only copied to
disk when flagged as important, otherwise they’re sequentially saved to RAM and then
removed, to avoid wear on the flash storage.

In addition to the above processes we also need to handle MQTT communication, publishing to
some topics (stats and device status), and subscribing to others (to receive commands). All of
this is done in an orchestrator script (maskcam_run.py in Figure 2), which also executes,
receives data from, and sends signals to the other processes.

The orchestrator script uses Python’s multiprocessing module, which enables true parallelization
(as opposed to the threading module due to the Python GIL) and communication between
processes (as opposed to the subprocess module).

The orchestrator script supports remote commands to start/stop streaming, restart the inference
process, and request to save a video chunk, among others. It’s also responsible for executing
the file-saving processes sequentially, which saves video files in RAM, and for deleting or
moving them to the flash memory upon request. Finally, it sends the statistics from a queue that
is filled by the inference process, in order to publish them to the corresponding MQTT topic.
(This publishing happens only when an Internet connection is available.)

All of the above-mentioned modules can be run as standalone processes for
debugging/development purposes, or entirely managed by the orchestrator script.

© 2021 Berkeley Design Technology, Inc. 12

Figure 3: MQTT broker and front-end web server architecture, which runs on a machine
separate from the Jetson device.

MQTT Broker and Web Server

To collect statistics and visualize them, we implemented an entirely separate server that runs on
a machine other than the Jetson (e.g., on AWS EC2). It receives statistics from the MaskCam
device, saves them to a database, and has a web-based GUI frontend to display them. The web
frontend is able to send MQTT commands directly to the devices, as well as provide links to
visualize streaming and download the video files stored on the device.

The server is implemented using four containers under a docker-compose environment, as
shown in Figure 3:

● MQTT broker (eclipse-mosquitto)
○ Receives messages from devices and frontend

● Postgres database (sqlalchemy ORM)
○ Stores all statistics and devices information

● Backend module
○ Runs an MQTT subscriber process which reads all messages from devices and

saves them to the database
○ FastAPI server reads from database and provides the information to the frontend

© 2021 Berkeley Design Technology, Inc. 13

https://hub.docker.com/_/eclipse-mosquitto
https://hub.docker.com/_/postgres
https://www.sqlalchemy.org/
https://fastapi.tiangolo.com/

● Frontend app (Streamlit)
○ Displays statistics and links, and sends MQTT commands to devices

The server is implemented entirely in Python (backend API, database model definition, and
even the frontend) using the mentioned libraries, and the main functionality required a bit more
than two weeks of effort for a senior developer.

We considered using AWS IoT and Greengrass to implement the server, instead of just EC2
instances with containers. In a production environment, it would make sense to consider using
AWS IoT Core to implement the MQTT Broker with authentication and other security features,
which were out of the scope of our project. We estimated that the front-end, database and API
would require similar effort being implemented with AWS tools. Given the roughly equal effort,
we elected to remain agnostic of the platform for those services.

Improving the Model and Dataset

Closing the development cycle, we did a final iteration to improve the object detection accuracy
by leveraging additional data sets and a face mask detection model developed by NVIDIA. That
model uses a combination of four publicly available datasets (Kaggle Medical Masks [6], MAFA
[7], FDDB, [8] and WiderFace [9]) to produce one large face mask detection dataset, with
approximately 6,000 labels for each object class.

Although this combined dataset was much bigger than our original dataset, it had two major
issues: it only contained two object classes (mask, no mask), and since it was a merge of many
datasets that were collected for other purposes, it didn’t have consistent labelling criteria. For
example, some datasets only contained labels of faces wearing masks, and non-masked faces
were ignored. One of the datasets only contained one label at the center of the scene, and any
other faces were ignored.

We addressed the most obvious issues in this dataset, merged our smaller dataset to provide
some samples of not_visible and misplaced classes, and also added labels for these classes to
the new dataset images.

The result was a dataset with 5,223 images, containing 7,008 mask labels, 7,866 no_mask,
3,678 not_visible, and 74 misplaced (these latter are harder to find and distinguish, resulting in
an unbalanced dataset). Compared to the smaller development dataset, the model trained on
this dataset increased its mAP[IoU>0.5] on static images from ~75% to ~90% over all classes,
using a random validation set of 10%.

Although the precision for mask and no_mask objects was improved, the small number of
not_visible objects causes the system to have a harder time with these objects. As a
consequence, the tracker sometimes loses the trajectory for people who are not looking at the
camera, but the whole system works better for people whose faces are clearly visible. On the

© 2021 Berkeley Design Technology, Inc. 14

https://www.streamlit.io/
https://github.com/NVIDIA-AI-IOT/face-mask-detection

whole, we feel this model represents both a quantitative and qualitative improvement over our
original model.

Next Steps for the Object Detection Model

Since the aim of this project was to provide a smart camera prototype and evaluation of the
Jetson Nano (versus creating the most accurate face mask detector possible), there’s room for
improvement in components like the object detection model and the tracking parameters, whose
performance can vary significantly depending on the camera setup (distance, angle and lighting
conditions).

For the object detection model, steps that could be taken to improve performance include:
● Curate the dataset more thoroughly, adding all labels for at least the not_visible class.
● Find a better balance between model accuracy and inference time, considering detection

consistency and the number of frames that the tracker needs to interpolate.
● Provide object visual features to the tracker, to improve matching accuracy.
● Crop frame areas to improve object resolution at the object detector input (evaluate

doing it automatically using optical flow)

7. Hardware Design
The next major portion of the MaskCam project was defining the hardware architecture and
selecting hardware modules to use for the system.

As mentioned earlier, the Jetson Nano Developer Kit consists of a Jetson Nano processor plus
various peripherals and ports (Ethernet, USB ports, GPIO pins, etc.) on a 3” x 4” development
board. The Developer Kit is attractively priced ($90, quantity one) but it is neither sold nor
warrantied for production use.

For production devices, NVIDIA sells the Jetson Nano module, a small system-on-module
(SOM) containing a Jetson Nano processor, 4 Gbytes of RAM, 16 Gbytes of eMMC flash
memory, and pins providing various peripheral signals. The Jetson Nano module is $129 in
single-unit quantities, with quantity discounts available. The Nano Module must be plugged into
a carrier board that provides desired peripherals. For prototyping, carrier boards can be
purchased from various NVIDIA ecosystem partners. For higher volume applications we would
expect companies to design their own custom carrier board—in essence, a motherboard for
their product which the Jetson Nano module plugs into.

The Jetson Nano Product Design Guide from NVIDIA provides detailed descriptions of each
hardware interface available, making it easy to understand what devices can be connected.
Using this information and the product requirements for MaskCam, we created a hardware block
diagram defining the architecture for the system.

© 2021 Berkeley Design Technology, Inc. 15

https://developer.nvidia.com/embedded/dlc/jetson-nano-product-design-guide

Figure 4: MaskCam hardware block diagram.

As shown in Figure 4, a carrier board hosts the Jetson Nano module and all the peripheral
hardware. A 4K camera module connects through a ribbon cable via a MIPI-CSI interface.
Internet connectivity may be provided over an Ethernet cable connected to the RJ45 port, or a
WiFi or cellular LTE module can be connected to mini-PCIe ports to provide MaskCam with
wireless Internet. The system can be powered through a 5-volt adapter or through a Power over
Ethernet (PoE) connection.

For each major item in the block diagram we researched options and evaluated them based on
their specifications, prices, and support for the Jetson Nano. From this analysis we selected a
carrier board, camera module, WiFi module, and LTE module to use for MaskCam.

Carrier Board Selection

The MaskCam prototype uses an off-the-shelf carrier board to simplify development and enable
faster time-to-market. For a high-volume version, a full custom hardware solution would need to
be designed and manufactured, as discussed in the Productization section below.

Finding a carrier board with the necessary hardware interfaces was made easier by using
NVIDIA’s Jetson Partner Hardware Products page. It provides a list of carrier board options, and
a list of interfaces provided by each option. We selected the Connect Tech Inc. (CTI) Photon
[10], which costs $351 per unit, met our design requirements, and had all the hardware
interfaces needed for our application. CTI’s support team was helpful and responsive, and
provided us with a list of WiFi and LTE modules that they had tested with the Photon.

© 2021 Berkeley Design Technology, Inc. 16

https://developer.nvidia.com/embedded/community/jetson-partner-products

Camera Module Selection

NVIDIA’s website provides a list of Jetson Partner Supported Cameras, which shows various
camera options that are supported on the Jetson platform. We evaluated several $29 cameras
on this list based around the IMX219 image sensor but we were not satisfied with their image
quality.

Ultimately we decided to use the Raspberry Pi High Quality (HQ) Camera [11] (which is not on
the Jetson Supported Cameras list). It’s based around the IMX477 image sensor, which
supports 4032x3040 resolution at 30 FPS and 1920x1080 resolution at 60 FPS. Its price point of
$75 ($50 camera module and $25 lens) provides a good cost/performance ratio, and it has wide
community support due to its popularity. It required a small hardware modification and special
drivers from RidgeRun to work with the Jetson Nano, but these were available and well
documented through RidgeRun’s website.

We found NVIDIA’s Jetson Partner Supported Camera list to be a good starting point for
researching options, but it could be improved by adding camera prices directly to the list (rather
than having to visit each vendor’s webpage for pricing) and by providing three to five
recommended options at each of three (low, mid, and high) price levels.

Wireless Module Selection

Although MaskCam has wired Ethernet, we realized that not all locations where MaskCam will
be installed necessarily have wired Ethernet available. To allow MaskCam to wirelessly connect
to the Internet, we decided to include either an optional WiFi module or an optional LTE module.
The Photon carrier board provides M.2 B-Key and M.2 E-Key connectors that allow for
connecting these modules. The final productized version of MaskCam would include a built-in
WiFi chip on the carrier board and an M.2 E-Key slot for the optional LTE module.

For WiFi, our research showed that the Intel 8265 Wifi module [12] isa popular option that is
supported by the Jetson Nano. The module has plug-and-play driver support on JetPack OS,
and worked immediately with both the Jetson Nano Developer Kit and CTI Photon carrier board.
However, it was difficult to get it working with balenaOS, discussed in the Containerization
section below.

For LTE, CTI indicated they had tested the Photon with both the Sierra Wireless Airprime
EM7455 and Quectel EM06 [13] modules. We selected the Quectel option simply because it
was offered at a lower price point ($50 vs. $144). Getting the Quectel module working with the
Jetson Nano was difficult and took much longer than expected. While the module itself worked
and was immediately supported by the drivers on JetPack OS, making it work with a cellular
data plan was challenging. We purchased a 500 MB/month Verizon data plan through Digi-Key’s
RevX Wireless portal and activated our device’s SIM card, but it was not able to establish an
Internet connection.

© 2021 Berkeley Design Technology, Inc. 17

https://developer.nvidia.com/embedded/jetson-partner-supported-cameras
https://developer.ridgerun.com/wiki/index.php?title=Raspberry_Pi_HQ_camera_IMX477_Linux_driver_for_Jetson

After some troubleshooting, we contacted Quectel for help and they told us the issue was
caused by our data plan provider. We then contacted RevX Wireless, who indicated the problem
was because our Quectel device wasn’t end-certified on Verizon. Quectel acknowledged this
and told us to contact Verizon to register our prototype for Verizon’s pre-certification process,
which required filling out significant paperwork. Ultimately, we switched to an AT&T data plan,
and the module was immediately able to connect to the Internet after doing so. The whole
process took almost two months of sending back-and-forth emails with various support
representatives.

Porting MaskCam from the Jetson Developer Kit to the Photon

The MaskCam code was developed on the Jetson Nano Developer Kit under the JetPack SDK.
It was fairly easy to get the MaskCam software running on the Developer Kit using the
Developer Kit’s built-in Ethernet and a ribbon cable to talk to the Raspberry Pi HQ camera.

With the Photon carrier board and other hardware components selected and in hand, the next
step was to bring up the MaskCam application on the new hardware, i.e., on the Connect Tech
Photon with a Jetson Nano module. Connect Tech gives instructions for installing the JetPack
SDK on the Jetson Nano module with their board support package (BSP) that provides the
correct device tree and drivers for the Photon carrier board.

We initially had difficulty getting the Raspberry Pi HQ Camera to work with the Photon. The CTI
BSP did not include drivers for the IMX477 sensor used by the camera, and the drivers
available through RidgeRun were not compatible with the special Linux kernel on the Photon
BSP. Fortunately, mid-way through our project, CTI released an updated BSP that provided
support for the IMX477. However, we still needed to manually install a special ISP configuration
file to resolve image quality problems with the camera.

Once the issues with the IMX477 driver were resolved, we were able to successfully run the
MaskCam program on the Photon.

Thermal Testing

Heat is a big concern for most embedded vision projects, and MaskCam is no exception. In
particular, the Jetson Nano processor begins to automatically reduce its clock rate when its
on-chip temperature sensor reaches 97° C (206.6° F), a process called thermal throttling.
Throttling prevents the system from harming itself but comes at a cost of processing fewer
frames per second.

We performed thermal testing with the Photon-based MaskCam application to determine if an
active heatsink (i.e., heatsink with a fan) would be needed to prevent throttling. The Photon
carrier board was set up in open air on a lab bench while running the MaskCam program while a
script continuously polled the Nano’s CPU and GPU temperature. This test was repeated for

© 2021 Berkeley Design Technology, Inc. 18

both a passive and active heatsink. A graph showing the temperature of the CPU and GPU over
time for both cases is shown in Figure 5.

Figure 5: MaskCam GPU and CPU temperature over time with active and passive heatsinks.

The test results showed that the Jetson Nano with a passive heat sink began throttling after
about 15 minutes (900 seconds) of operation, demonstrating the need to use a fan in the end
product to maintain the Nano at a moderate temperature. As a result, the enclosure design must
provide active cooling for the hardware while minimizing the risk of water and dust ingress to the
electronics. In the Productization section of this report, we discuss our work with Jabil to create
an enclosure concept that meets these requirements.

8. Containerization
For those unfamiliar with the term, a software “container” is a collection of application binaries,
libraries, and support files that are supplied as a single file and that run under a host operating
system. Containers have several benefits over traditional software installation methods (e.g.,
“apt install” on Linux):

● They eliminate or greatly reduce version dependencies or conflicts between the
application, the host operating system, and other applications by bundling all required
files into a single package.

© 2021 Berkeley Design Technology, Inc. 19

● Since they are self contained, they are easy to distribute and install.
● They provide a level of isolation between containers running on the same host,

increasing reliability and security.

Containers have become a best practice for cloud and server applications over the last decade
and are just now starting to become popular for embedded applications. Under Linux, Docker is
the most popular open source container system and comes pre-installed on the Jetson Nano
under NVIDIA’s JetPack SDK.

Using Docker containers made development easier for our team in at least two different ways:
First, it simplified the installation, build, and test process, since installing a new version of the
software with all necessary libraries required only a single command. Second, it made it easier
for our group to work on different hardware platforms—specifically, a mix of Jetson Nano
Developer Kits and CTI Photon carrier boards with Jetson Nano modules. This was particularly
useful because Photon carrier boards were in limited supply during the time we were developing
MaskCam, so not all of our team members had access to Photon boards. Using Docker we
were able to fashion a single container that worked on both hardware platforms.

The question we grappled with was: would it be feasible to also use containers for production?
Happily, the answer was yes. One of NVIDIA’s ecosystem partners is balena, which makes a
minimal host OS called balenaOS designed for just this purpose. BalenaOS is a very thin
Yocto-based Linux distribution built specifically for running containers on embedded devices.
Moreover, balenaOS can be used with balenaCloud, a cloud-based fleet-management platform
that allows easy configuration, deployment, and updating of balenaOS devices in the field.1

We were able to produce a single deployment container image that works not only on the Jetson
Nano Developer Kit and Photon hardware, but also on different Linux-based distributions that
can run on that hardware: Nvidia’s JetPack and balena’s balenaOS. This allows users interested
in trying out MaskCam to quickly install it on a Jetson Nano Developer Kit with a single
command.

Finally, in combination with balenaOS, containerizing MaskCam made for nearly turn-key
off-the-shelf updates with all the expected features such as blue/green staged deployments.

CUDA in a Container

The base BalenaOS is not easily modifiable, being designed completely around supporting
Docker application containers. While balenaOS provides containers running on the Jetson Nano
with full access to the GPU, none of the support libraries such as NVIDIA CUDA Toolkit and
DeepStream can be installed on the host OS. In practice this means that our containers are

1 AWS IoT Greengrass was another possible choice to manage our container deployment, but ultimately
we chose Balena; one advantage is that Balena’s cloud instrumentation makes it particularly simple to
completely upgrade the OS on a host device if necessary.

© 2021 Berkeley Design Technology, Inc. 20

https://www.balena.io/os/

much larger than average. After CUDA, DeepStream, and Maskcam are installed, our
containers are over 6 Gbytes.

While definitely not svelte, proper layering with our code and neural network model being in the
last layers of the container make this less of an issue for updates than it might seem.
BalenaCloud does a good job of keeping track of layers and only sending necessary differentials
to devices.

The one serious concern from a design perspective is that if an early layer change is required
(such as a security issue in the base container OS image), it would require the full container to
be updated. To update the full container, an entire new container needs to be downloaded and
held in storage alongside the existing container. This means that we need slightly more than
twice the storage space required by the container itself to accommodate the possibility of doing
a full update. An early prototype of our container that was closer to 9 Gbytes sent one of our 16
Gbyte Jetson devices into a fatal out-of-disk-space loop that was not recoverable without
reflashing the device.

CTI Photon and balenaOS

Balena supports a wide range of hardware with variations on its base Yocto build. While the
Jetson Nano Developer Kit hardware is officially supported by balena, balenaOS for the CTI
Photon carrier board is a community build maintained by Drebble, an edge computing solutions
company based in the Netherlands.

We built a balenaOS image for the CTI Photon Carrier board using the balenaCloud dashboard
and installed it on our Jetson Nano module. Using balenaOS lets us connect to the device and
interact with it remotely through a web-based balena dashboard. The balena dashboard
provides information about the device and allows us to quickly download the MaskCam
container from balenaCloud onto the device. It provides device and container configuration
options, with one interesting feature being the ability to point to different device tree files on a
per-device basis. We used this setting to enable the correct DTB file for running our camera.
The screenshot in Figure 6 shows how the device appears on the dashboard.

© 2021 Berkeley Design Technology, Inc. 21

Figure 6: Device information on balenaCloud dashboard.

Getting the Raspberry Pi HQ Camera and Intel 8265 WiFi modules up and running on the CTI
Photon carrier board under balenaOS turned out to be somewhat challenging.

The CTI Photon build from Drebble was lagging behind the CTI kernel driver package and BSP,
which meant that it didn’t have the driver patches needed to access the Raspberry Pi HQ
Camera. After conversations with Drebble and balena, the problem was rectified rapidly, and we
installed the right DTB and drivers for the camera. We were impressed with the level of support
we received from the engineers at Drebble for their open source build.

The Intel 8265 WiFi module did not immediately work with balenaOS like it did on JetPack OS.
BalenaOS had specific drivers for the 8265 module that were also integrated into the CTI
Photon build. However, a bug with the Active State Power Management (ASPM) feature of the
PCIe driver prevented the module from initializing correctly. We had to disable ASPM in the boot
configuration to get it to work. Again, the support from balena and Drebble was very helpful
here.

9. Productization
With a functioning prototype in hand, we turned to Jabil Optics to get an estimate of MaskCam
manufacturing costs for volume production. Jabil is one of the world’s largest electronics
manufacturers, providing manufacturing services for Apple, Cisco, Dell, HP, and many others;
Jabil Optics is a specialized group within Jabil that provides design and assembly services for
optical electronics, including smart camera designs.

© 2021 Berkeley Design Technology, Inc. 22

We worked with Jabil Optics engineers to estimate the overall hardware BOM cost, explore
options for custom camera modules, get a preliminary estimate for the cost of a custom
enclosure, and to understand manufacturing value added costs. Our target quantities were 10K
and 100K units/year.

We provided Jabil with the hardware specifications for MaskCam and a list of the off-the-shelf
hardware modules used in the prototype. NVIDIA also provides an open source schematic of
the Jetson Nano Developer Kit, which our team found to be helpful for accelerating the
hardware design timeline. Jabil utilized the open source NVIDIA schematics (and the
schematics for another open source board, the Antmicro Jetson Nano Baseboard) as a starting
point to determine the production BOM.

We kept the requirement for a mini-PCIe connector for an optional LTE module, but we moved
the optional mini-PCIe WiFi interface onto the custom carrier board using a low-cost 802.11b/g/n
WiFi chip.

Jabil Optics removed unnecessary interfaces (e.g., the HDMI interface) from the schematics and
then estimated the volume cost for the remaining components.

Jabil Optics researched various image sensors and lenses that could be used for a custom
camera module at a lower cost point than the Raspberry Pi HQ Camera. They found image
sensors that met our application requirements while having a better cost to performance ratio
than the IMX477 sensor. They also considered off-the-shelf and custom lens designs for these
sensors that provide a wide field of view and met the other sensor requirements (image format,
resolution, etc.). Ultimately, their proposed custom camera module cost $34 at 100K volume.
This camera module would need to be designed before entering manufacturing production of
MaskCam.

We asked Jabil Optics to investigate the possibility of using an HD-resolution sensor instead of
a 4K sensor. To our surprise, they determined that the estimated difference in cost, including
both sensor and lens, would only be about $4.

A critical aspect of MaskCam that needs to be completed before entering manufacturing
production is the enclosure design. Jabil has design services for developing custom enclosures
and they worked to estimate its cost. The enclosure has several unique requirements:

● Industrial design of case must allow for mounting the MaskCam unit in various locations.
● The enclosure must provide some level of weather protection for outdoor installations of

MaskCam.
● The enclosure must provide active cooling and air flow for the Jetson Nano to prevent it

from throttling.

To meet these requirements, Jabil proposed a finned metallic enclosure that acts as a heatsink
for the Jetson Nano. The enclosure has two compartments. One interior compartment contains

© 2021 Berkeley Design Technology, Inc. 23

https://developer.nvidia.com/embedded/dlc/jetson-nano-carrier-board-reference-design-files
https://github.com/antmicro/jetson-nano-baseboard

the Jetson Nano and other sensitive electronics and is IP67 rated to prevent water and dust
ingress. The Jetson Nano is thermally linked to the enclosure through thermal grease to
promote heat conduction from the Nano to the enclosure. A second compartment contains a fan
and air channel for actively cooling the fins of the enclosure. The estimated cost for this
enclosure is $32 at a 100K volume.

Finally, the MaskCam product has to be manufactured, assembled, and packaged in volume.
Jabil’s manufacturing value added (MVA) costs can range from 25% - 50% of the overall BOM
cost, depending on:

● Production volumes (which impact efficiencies and amortization)
● Design customizations required
● Custom manufacturing equipment required
● Location of manufacturing - total system cost (supply chain, equipment availability,

tariffs, etc.)

Jabil estimated an initial MVA of 40% for producing MaskCam in quantities of 100K/year. Table
4 shows a breakdown of MaskCam’s estimated production cost at 10K and 100K volumes. The
table also includes pricing for optional modules, such as a 256 Gbyte SD card or an LTE
module.

Item Description Cost (USD, 10K/year) Cost (USD, 100K/year)

Camera Module 4K (e.g., Sony IMX215) $42.36 $33.84

Carrier Board See Figure 4 $54.82 $53.13

Jetson Nano Module $99.00 $89.00

Enclosure, Fan, WiFi ant. $41.20 $35.29

Total BOM $237.38 $211.26

MVA 50% @ 10K, 40% @ 100K $118.69 84.51

Total Factory Out Price $356.07 $295.77

Optional:

SD Card, 256 Gby E.g., SanDisk Class 10 $30.00 $26.00

LTE M.2 Card E.g., Huawei ME0909S $50.00 $45.00

Ethernet Cable Cat 6 $1.00 $1.00

IP67 Connector Cover $2.50 $2.00

Power Supply 5 V, 4 A $5.00 $4.00

Table 4: Jabil Optics’ cost estimates for MaskCam and its optional components at quantities of 10K
and 100K per year.

© 2021 Berkeley Design Technology, Inc. 24

Jabil emphasizes that the costs shown in Table 4 are estimates, and will be impacted by such
factors as:

● Industrial design of case
○ Materials
○ Mounting requirements

● Lens design
○ “Off-the-shelf” vs. “custom”
○ Sacrifice optical performance for cost

■ Field of view, modulation transfer function, chief ray angle
○ Lens environment (e.g., do we need to prevent fogging of lens?)

● Camera module design
● Board design
● Thermal design

○ Link heat sink to case through thermal grease/pad to promote conduction
○ Fan design and fan port design (if required)

● Packaging
● Manufacturing location
● Legal issues

○ Liability - who is responsible? (Jabil, customer, etc.)
○ Representations and warranties

10. Steps to Production
After completing the efforts to containerize the MaskCam application and deploy it on the CTI
Photon carrier board, we have a fully functional prototype of the mask detection camera.
BalenaCloud allows us to quickly load the container on the Photon-based Jetson Nano,
configure it, run the MaskCam application, and deploy updates. The camera is able to monitor
crowds and report statistics on mask detections to a cloud-based server using MQTT. A
browser-based front end allows users to view statistics and remotely download video clips. A
live stream of the camera feed, with detections drawn on each frame, can be viewed over a
local network (Figure 7).

© 2021 Berkeley Design Technology, Inc. 25

Figure 7: MaskCam in action at an airport.

There are a number of tasks to complete before MaskCam could enter production:

● Enclosure. An enclosure would need to be created to encapsulate the hardware, protect
the electronics from water and dust, and allow for adequate cooling. To start with, this
could be a basic enclosure for the rapid time-to-market iteration of our product (the one
that uses off-the-shelf hardware modules, like the Photon carrier board), and then could
be followed by a more elaborate enclosure for our high volume product. Further thermal
testing would be needed to characterize the performance of any enclosure or thermal
solution.

● Carrier board design. We have sketched out the components that we believe we would
need on our custom carrier board, and Jabil Optics has produced manufacturing cost
estimates based on this sketch, but we have not actually designed or manufactured a
custom carrier board.

● Set up scripts. We have not addressed the set-up scripts that would allow a new
MaskCam owner to easily get a MaskCam device set up on their network. For WiFi
these would typically be set-up scripts that would allow the MaskCam to start out of the
box as a WiFi access point and allow a user to configure network credentials; for wired
Ethernet this might be a smartphone app that displays a configuration QR code that
MaskCam could read through its camera. For the former at least, balena provides a
“WiFi Connect” github repo.

© 2021 Berkeley Design Technology, Inc. 26

https://github.com/balena-io/wifi-connect

● Quality assurance and compliance testing. MaskCam needs to be tested to
characterize its accuracy in a variety of visual conditions. We need to confirm that the
camera is able to operate, stay connected to the remote web server, and report data for
weeks or months without human intervention. Environmental testing is needed to verify
MaskCam is able to operate in outdoor conditions, as well as compliance testing to
demonstrate MaskCam meets regulatory requirements set by organizations like the
FCC.

Additionally, with any neural-network based product, there is room for improvement in the
accuracy and implementation of the deep-learning algorithm. As mentioned in the Software
Development section, our mask detection model could be improved with a larger dataset,
particularly with images of people whose face is not visible. Additionally, one could experiment
with different models (such as NVIDIA’s PeopleNet, or YoloV5) to improve the accuracy, at a
tradeoff of lower frame rate. Finally, it would also be possible to use motion detection to detect
and crop regions of interest of each frame and pass these smaller size images to the model to
improve model accuracy for people at a distance.

11. Conclusions
Overall, our team was impressed with the Jetson Nano and its ecosystem. The quality
documentation and examples for the NVIDIA SDKs, the breadth of the hardware partners and
modules available to be used with the Jetson Nano, and the containerization tools from balena
all facilitated rapid development of our smart mask detection camera. The fact that we were able
to conceptualize, design, and create a production-ready prototype of MaskCam in a short time
with a small team speaks to this.

That said, we encountered several challenges in both the hardware and software development
efforts. We ran into two general categories of problems:

● Discoverability. NVIDIA and its ecosystem move quickly, with frequent updates to
hardware, software, and drivers, and much of the support is provided via the NVIDIA
Developer Forum. In general, this is a good thing! But it means that sometimes it is hard
to discover solutions to problems. For example, does a given peripheral work on the
Jetson Nano? Doing a quick Google search may lead you to an outdated forum posting
from six months ago saying that it doesn’t—but that hasn’t been updated to reflect that,
as of a month ago, it now does.

● Switching platforms. Generally, we found the process of moving from one platform to
another to be difficult and time consuming. While developing our application on the
Jetson Nano Developer Kit was easy enough, in porting it to new hardware or software
platforms we often ran into problems. On the hardware side, we had difficulty porting the
MaskCam application from the Developer Kit to the Photon carrier board. On the
software side, we encountered difficulty when porting from JetPack to balenaOS and

© 2021 Berkeley Design Technology, Inc. 27

Docker containers. NVIDIA could improve the overall ecosystem by making sure their
hardware and software partners coordinate to support hardware and software platform
interchangeability, but this is a tall order given the size of the ecosystem and the pace at
which things move.

Here are some more specific examples of the issues we worked through while developing
MaskCam:

● The documentation for using DeepStream with custom models and Gstreamer Python
bindings was lacking, which created a steep learning curve on that aspect of the port to
DeepStream.

● We struggled with getting hardware module drivers to work on the Photon carrier board,
both with JetPack OS and balenaOS. These included the Raspberry Pi HQ camera, the
Intel 8265 Wifi module, and the Quectel LTE module. While there’s plenty of
documentation and instructions on using the Jetson Nano Developer Kit, the level of
support drops off very quickly when moving to the Jetson Nano module on an
independent carrier board.

● The 16 Gbyte storage limit of the Nano’s eMMC chip was difficult to work with. We spent
significant time reducing the size of our container and application to get it under 8
Gbytes (in order to provide space for in-field updates).

● Containerizing CUDA and DeepStream under balenaOS was challenging because the
usual method of installing packages (e.g., apt install) did not provide a working
installation. There was a lack of package dependency information, and the error
messages from running sample code gave no information on which packages were
missing.

Fortunately, by searching the NVIDIA Support Forums and receiving help from NVIDIA’s
partners, we were able to overcome these problems.

In conclusion, we found the Jetson Nano to be a useful enabling technology for edge
applications requiring significant processing power. The NVIDIA hardware and software
ecosystem accelerates the timeline for developing intelligent devices. There are several pain
points with using the Jetson Nano, particularly with porting applications to new platforms, but
these are alleviated by NVIDIA’s support community. While the Jetson Nano’s price and power
consumption will not fit all applications, for those it does, the Nano merits consideration by
product teams looking to rapidly develop edge AI processing systems.

We invite readers to try out the MaskCam code, available at https://github.com/bdtinc/maskcam;
you can run it in a container on a Jetson Nano Developer Kit with a USB webcam with just two
commands, as described in the repo’s README. Questions may be directed to
maskcam@bdti.com.

© 2021 Berkeley Design Technology, Inc. 28

https://github.com/bdtinc/maskcam
mailto:maskcam@bdti.com

12. References
Jetson documentation:
[1] Jetson Module Technical Specifications:
https://developer.nvidia.com/embedded/jetson-modules
[2] Jetson Nano Developer Kit:
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
[3] JetPack SDK: https://developer.nvidia.com/embedded/jetpack

Mask detection algorithm documentation:
[4] Face mask detection in street camera video streams using AI: behind the curtain:
https://tryolabs.com/blog/2020/07/09/face-mask-detection-in-street-camera-video-streams-using
-ai-behind-the-curtain/

Yolo V4 documentation:
[5] Real-time object detection method for embedded devices:
https://arxiv.org/ftp/arxiv/papers/2011/2011.04244.pdf

Face mask datasets:
[6] Kaggle Medical Masks Dataset:
https://www.kaggle.com/shreyashwaghe/medical-mask-dataset
[7] MAsked FAces (MAFA) Dataset:
http://221.228.208.41/gl/dataset/0b33a2ece1f549b18c7ff725fb50c561
[8] Face Detection Dataset and Benchmark (FDDB): http://vis-www.cs.umass.edu/fddb/
[9] WIDER FACE Dataset: http://shuoyang1213.me/WIDERFACE/

Jetson ecosystem documentation:
[10] Connect Tech Photon carrier board:
https://connecttech.com/ftp/pdf/CTIM_NGX002_Manual.pdf
[11] Raspberry Pi High Quality Camera:
https://www.raspberrypi.org/products/raspberry-pi-high-quality-camera/
[12] Intel Dual Band Wireless-AC 8265 module:
https://ark.intel.com/content/www/us/en/ark/products/94150/intel-dual-band-wireless-ac-8265.ht
ml
[13] Quectel EM06 cellular module: https://www.quectel.com/product/EM06.htm

Version 2021-03-17 0916 PT (rev 2)

© 2021 Berkeley Design Technology, Inc. 29

https://developer.nvidia.com/embedded/jetson-modules
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetpack
https://tryolabs.com/blog/2020/07/09/face-mask-detection-in-street-camera-video-streams-using-ai-behind-the-curtain/
https://tryolabs.com/blog/2020/07/09/face-mask-detection-in-street-camera-video-streams-using-ai-behind-the-curtain/
https://arxiv.org/ftp/arxiv/papers/2011/2011.04244.pdf
https://www.kaggle.com/shreyashwaghe/medical-mask-dataset
http://221.228.208.41/gl/dataset/0b33a2ece1f549b18c7ff725fb50c561
http://vis-www.cs.umass.edu/fddb/
https://connecttech.com/ftp/pdf/CTIM_NGX002_Manual.pdf
https://www.raspberrypi.org/products/raspberry-pi-high-quality-camera/
https://ark.intel.com/content/www/us/en/ark/products/94150/intel-dual-band-wireless-ac-8265.html
https://ark.intel.com/content/www/us/en/ark/products/94150/intel-dual-band-wireless-ac-8265.html
https://www.quectel.com/product/EM06.htm

