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OVERVIEW 

Computer vision algorithms are becoming increasingly important in mobile, embedded, 
and wearable devices and applications. These compute-intensive workloads are challenging 
to implement with good performance and power-efficiency. In many applications, 
implementing critical portions of computer vision workloads on a general-purpose graphics 
processing unit (GPU) is an attractive solution. 

Qualcomm enables programming of the Adreno GPU in its Snapdragon application 
processors via the open standard OpenCL language and API. OpenCL support enables 
programmers to offload computer vision algorithm kernels to the GPU, which in turn 
provides speed and power-consumption advantages over a CPU implementation. 

BDTI developed an Android application demonstrating computer vision functionality 
utilizing the Adreno 420 GPU in Qualcomm’s Snapdragon 805. The BDTI application can 
run compute-intensive computer vision functions on the GPU or the CPU, enabling 
comparisons of GPU and CPU performance and power-efficiency. This paper discusses the 
BDTI application, implementation and optimization techniques used in its development, and 
the substantial benefits observed when offloading compute-intensive kernels to the GPU. 
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1. Introduction  
Computer vision promises to bring exciting 

new features and user experiences to mobile 
devices such as smart phones, tablets and 
wearables. Many vision-enabled applications are 
already commonplace: photo-stitching techniques 
enable automatic generation of panoramic views 
from a series of images, feature detection and 
tracking techniques enable augmented reality 
experiences, and so on. And computer vision 
algorithms and techniques are advancing rapidly, 
promising to deliver many new features and 
applications. But computer vision algorithms tend 
to be very compute-intensive, threatening to bog 
down mobile devices’ CPU cores and memory 
bandwidth, and to drain their batteries. 

Mobile application processors increasingly 
include general-purpose graphics processing units: 
graphics processors (GPUs) capable of massively-
parallel general-purpose computing. These 
specialized processing engines are often a great fit 
for computer vision algorithms, which are 
typically characterized by very high data 
parallelism (”Data parallelism” refers to the ability 
to distribute data among many parallel compute 
resources such as those available in a GPU). To 
implement computer vision applications, GPUs 
can be programmed using the open standard 
OpenCL language and API from the Khronos 
Group. For example, the Qualcomm’s 
Snapdragon 805 application processor includes 
the Adreno 420 GPU. The Adreno 420 can be 
programmed with OpenCL to offload vision 
algorithms from the CPU cores, increasing 
performance and reducing power consumption. In 
this paper we explore how BDTI used OpenCL to 
offload vision algorithms from the CPU to the 
GPU in a demonstration application, and discuss 

the improvements in performance and power 
consumption obtained using the Qualcomm 
Adreno GPU in this way. 

The BDTI Background Blur OpenCL Android 
application was designed to run on the 
Snapdragon 805 MDP tablet reference design 
from Intrinsyc. The application detects the largest 
foreground object in the camera’s view—usually 
the user—and displays the video with the 
foreground object shown unaltered, and the 
background shown with severe blurring applied. 
This functionality could be useful, for example, in 
a video conference call where we may want to 
obscure confidential information on a whiteboard 
behind the user, while the image of the user is 
seen clearly.  

The BDTI Background Blur OpenCL 
application includes two modes of operation: in 
the default “GPU” mode, the computationally-
intensive portions of the algorithm are offloaded 
to the GPU using OpenCL. For comparison, a 
“CPU” mode is provided in which the 
computationally-intensive portions of the 
algorithm are executed on a single CPU core. This 
demo therefore clearly illustrates the capabilities of 
the Qualcomm Adreno GPU for computer vision 
applications. 

2. Algorithm Overview 
The BDTI Background Blur OpenCL 

application employs cutting-edge background 
subtraction techniques to separate foreground 
objects from background. The algorithm is 
illustrated in Figure 1. 

The algorithm begins with a background 
subtraction kernel. This kernel employs a 
modified version of the background subtraction 
algorithm described in [1]. This kernel 
continuously updates a model of the background, 
and compares each pixel in the current frame to 
the background model to estimate the 
background/foreground classification of the pixel. 
The background model contains multiple samples 
of pixel intensity and local binary pattern 
descriptors for each color component at each 
pixel position. At each pixel position, the kernel 
searches the samples in the background model for 
samples that match the color intensities and local 
binary pattern descriptors for the pixel position in 
the current frame. If sufficient matches are found, 
the pixel is estimated to be in the background. 
Otherwise it is estimated as foreground. In 
addition to the background/foreground 
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segmentation mask, the background subtraction 
kernel outputs an estimated background image.  

When areas of the foreground closely match 
the background in both color and intensity, the 
background subtraction kernel can sometimes 
misclassify an entire region of foreground pixels as 
background. To greatly reduce this artifact, the 
application refines the estimated foreground mask 
using a proprietary method developed by BDTI 
and inspired by k-means clustering. The 
refinement compares pixels that are marked as 
background in the estimated mask to nearby pixels 
marked as foreground in the estimated mask; it 
marks a background pixel as foreground if it is 
more similar to nearby foreground pixels than it is 
similar to the estimated background image. This 
refinement procedure fills in portions of the 
foreground mask where the foreground pixels are 
too close to the background model to be correctly 
marked as foreground by the background 

subtraction kernel. The refinement method is 
performed in three stages: 

Preprocessing: in this stage the estimated 
foreground mask is eroded with a 3×3 structuring 
element to reduce false positives, and a dynamic 
threshold is computed for each pixel position. The 
dynamic threshold is used in the following stages. 

First-pass refinement search: in this stage, 
for each pixel marked as background in the 
estimated mask, the algorithm searches for nearby 
foreground pixel matches, and marks the 
background pixel as foreground if enough 
matches are found. 

Second-pass refinement search: this stage is 
identical to the previous stage, further refining the 
estimated foreground mask output by the previous 
refinement pass. 

Finally, the algorithm applies morphological 
operations, finds the contours of foreground 
objects, selects the largest contour, and removes 
all other contours from the foreground mask. The 
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resulting mask is used to blend the original video 
frame with a blurred version of the same video 
frame. The final refined and contour-processed 
mask is also passed to the background subtraction 
kernel along with the next video frame, where the 
processed mask is used to control thresholds and 
background model updates. 

To reduce computational requirements, the 
background subtraction and refinement kernels 
downsample the input frame by a factor of two 
horizontally, and by a factor of four vertically. 
This downsampling is performed by simply 
accessing a subset of the input pixels—a 
downsampled image is never physically generated 
in memory. Due to this downsampling of the 
input, the blend mask is generated at the 
downsampled resolution. The blend mask is 
passed to OpenGL-ES as a texture, and is 
automatically upsampled by the GPU to the 
original frame size during texture mapping. 
Because the original input image is never 
physically downsampled, the sharpness of the 
rendered foreground pixels is not impacted. 
Therefore, downsampling dramatically reduces 
computational demand with negligible impact on 
output quality. 

3. Implementation Overview  
The BDTI Background Blur OpenCL demo 

application is architected to realistically portray the 
advantages of the Adreno GPU in vision-enabled 
applications. The background subtraction and 
refinement kernels are very computationally 
intensive and comprise the bulk of the processing 
in the application. Therefore, optimizations focus 
on these kernels. To ensure representative 
performance in both the default GPU mode and 
in the CPU mode, thorough and reasonable 
optimizations are employed in both modes. 
Optimizations of the application’s software 
architecture are discussed in this section, and 
optimizations of the GPU and CPU 
implementations of the kernels are discussed in 
Section 4 and Section 5, respectively. 

When offloading computation from a CPU to 
a GPU, a key consideration on most hardware 
platforms is the need to copy data between CPU 
and GPU memory spaces. Memory copies 
introduce latency and consume power, especially 
for large buffers such as video frames. The BDTI 
Background Blur OpenCL demo application is 
therefore designed to minimize the need to move 
data between CPU and GPU memory spaces. 

The input video frame is needed by the GPU 
in both the CPU and GPU modes of operation, 
since the GPU renders the output in both modes. 
The input video is also needed by the CPU in 
CPU mode, but isn’t needed by the CPU when 
operating in GPU mode. Video frames are fetched 
from the camera directly into GPU memory space, 
eliminating the need to copy input frames in GPU 
mode. 

Figure 2 depicts the partitioning of the 
algorithm among processors and APIs on the 
Snapdragon application processor. The 
background subtraction and refinement kernels 
are implemented in OpenCL in the GPU mode, 
and in C using ARM NEON compiler intrinsics in 
the CPU mode. 

The contour processing portion of the 
algorithm is implemented on the CPU using 
Qualcomm’s FastCV library. Contour tracing 
kernels are difficult to parallelize efficiently, and 
therefore are not an attractive target for GPU 
optimization. Qualcomm’s FastCV library includes 
a highly optimized CPU implementation of 
contour tracing. In GPU mode, the refined 
foreground mask must be copied from GPU 
memory to CPU memory for contour processing. 
In both modes, after contour processing the 
resulting blend mask must be copied to GPU 
memory for rendering. Because the subsampled 
masks are only a fraction of the size of a video 
frame, these copies have a relatively small impact 
on speed and power consumption. 

In the GPU mode of the application, the CPU 
can perform contour processing in parallel with 
the background subtraction and refinement 
kernels running on the GPU. To enable this 
parallel operation of the CPU and GPU, the 
application is pipelined as illustrated in Figure 3. 
For each frame, background subtraction and 
refinement consume the frame directly from the 
camera, while the contour processing and 
rendering to the display consume a mask, an input 
frame, and a blurred frame from the previous 
frame period.  

The application uses OpenGL-ES to render 
output to the display. In addition, the application 
uses OpenGL-ES to render the input video frame 
to two textures. One is a low-resolution texture, 
which results in blurring of the background when 
this texture is interpolated back to full resolution 
during rendering to the display. The other texture 
is a full-resolution texture, which implements a 
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one-frame delay needed due to the software 
pipelining of the application.  

4. Adreno GPU OpenCL-
Accelerated Implementation 

In OpenCL, data-parallel algorithm kernels are 
broken down into a large number of very small 
“work items.” A work item typically represents the 
set of operations for processing a single pixel or 
small group of pixels. The implementation is 
designed to minimize—and hopefully eliminate—
any dependencies between work items so that 
work items can execute in parallel. Programmers 
generally think of work items as independent 
parallel threads, and GPGPUs typically execute 
many work items in parallel. Spinning off 
hundreds or in some cases even thousands of 
work-items enables the GPU to hide memory 
latency. 

OpenCL also provides Single Instruction 
Multiple Data (SIMD) capabilities, with explicit 
support for two-, four-, eight-, and sixteen-
element vectors. This enables programmers to 
take advantage of additional data parallelism 
within a work item. 

In the GPU mode of the BDTI Background 
Blur OpenCL application, background subtraction 
and refinement are offloaded to the Adreno GPU 
via OpenCL. The OpenCL code comprises three 
kernels: background subtraction with local binary 
patterns, refinement pre-process, and refinement 
search. The refinement search kernel is executed 
twice per frame. All of the OpenCL kernels are 
carefully refactored1 and SIMD-optimized to 
expose the inherent parallelism of the algorithms 
and efficiently utilize the resources of the Adreno 
420 GPU architecture. All three kernels operate 

                                                      
1
 Code refactoring is the process of restructuring 

existing code without changing its external behavior. 
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Figure 2 BDTI Background Blur implementation partitioning 
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on one pixel position per work-item. Additional 
OpenCL implementation and optimization 
considerations are discussed below. 

Memory Footprint and Local Memory 
Data-intensive algorithms usually require 

efficient use of fast local memories for optimal 
performance. On a CPU, for example, algorithms 
can be refactored to optimize utilization of L1 
caches. On a GPU, fast local memory must be 
explicitly managed, or else performance suffers 
dramatically. A collection of work-items is 
referred to in OpenCL parlance as a work-group, 
and each work-group has access to a pool of fast 
local memory. 

To minimize the impact of long DDR access 
latencies, each work-item copies the state and 
input data it needs from DDR into variables and 
arrays residing in local memory. The work-item 
then operates on this data locally. This idiom is 
utilized for all three OpenCL kernels in the BDTI 
Background Blur OpenCL application, with some 
important differences among the kernels 
described below. 

In the background subtraction kernel (unlike 
most computer vision kernel functions), each 
work-item accesses only a minimal amount of data 

from neighboring pixel positions. Although the 
background model includes many background 
samples per pixel position, there is little overlap in 
state and input data among the kernel’s work-
items. Therefore, each work-item can copy its 
state and input data into local variables and arrays 
without duplicating the copies performed for 
neighboring pixels –thus avoiding overflowing the 
local memory and/or causing redundant accesses 
to slow DDR memory. 

The OpenCL code for the background 
subtraction kernel copies state and data from 
DDR into local variables, but it does not explicitly 
declare its local copies of input and state data as 
residing in local memory. For this kernel it was 
not necessary to manage local memory more 
explicitly, probably because most local variables 
and arrays fit in GPU registers for this kernel, and 
the minimal overlap with neighboring pixels 
means that even without more explicit techniques 
few DDR memory access conflicts occur. This is 
in contrast to the refinement pre-processing and 
search kernels, where more explicit memory 
management is required. 

The refinement pre-process and refinement 
search kernels both process a neighborhood of 
pixels centered on each pixel position. Therefore, 
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most of the input data for each pixel position 
overlaps with the input data of neighboring pixel 
positions in these kernels. Explicit management of 
GPU local memory is needed to avoid redundant 
copies as each work-item copies its input into 
local variables and arrays.  

Work-items in these kernels are grouped into 
an eight-by-eight tile of pixel positions per work-
group. Local arrays are used to store the input 
data required for an entire eight-by-eight tile, and 
are shared by all of the work-items in the 
respective work-group. Each work-item copies a 
small portion of the input data for the entire work 
group into the local array, and the portions 
fetched by work items do not overlap. After 
copying the data, work-items within a work-group 
synchronize using OpenCL’s “barrier” mechanism 
to ensure that all input data has been loaded 
before work-items proceed to perform their 
computations. The work-items thus cooperate to 
fetch overlapping inputs from slow DDR 
memory. This implementation technique 
eliminates redundant copies of data in local 
memory, reduces redundant accesses to DDR, and 
helps the GPU hide the latency of slow DDR 
memory accesses. 

Per-Pixel Pseudo-Random Number 
Generation 

To achieve desirable statistical properties, 
updates of the background model are randomized 
in the background subtraction kernel. Because a 
pseudo-random number generator updates its 
state with each invocation, calling a single random 
number generator from each work item would 
create a dependency as all work items attempt to 
access and update the same state. This 
dependency would block the work items from 
executing in parallel. Therefore, each work item 
includes an independent random number 
generator with its own state. To ensure that the 
random number generators for all of the work 
items are uncorrelated, each random number 
generator must be randomly seeded at 
initialization. The OpenCL random number 
generator code is based on [2]. 

Conditional Operations and Branches 
GPU architectures typically require that many 

OpenCL work items share a single instruction 
stream. Multiple execution paths due to data-
dependent branches or conditional operations 
within a work item can therefore reduce 

performance, oftentimes drastically. OpenCL 
kernels (and OpenGL shaders) are often 
refactored to eliminate branches. 

The background subtraction kernel includes 
many branches per pixel. However, this kernel’s 
performance on the Adreno GPU was about twice 
the performance of the CPU version without 
requiring refactoring to eliminate the branches. 
This may be due to very good correlation between 
the execution paths for the work items at 
neighboring pixel positions—when a certain 
branch is taken for one pixel position, it is likely 
for the same branch to be taken for neighboring 
pixels. Therefore it is likely that many work items 
naturally execute the same instruction stream 
despite the presence of branches. However, this is 
not always the case, and it may be possible to 
further improve the performance of this kernel 
with refactoring to eliminate some of the 
branches. However, in order to eliminate a 
branch, the refactored kernel must sometimes 
perform the work of both branch-taken and 
branch-not-taken execution paths, thus increasing 
the computational workload. Optimizing the 
background subtraction kernel further would 
therefore require laborious statistical analysis to 
balance the increase in parallelism gained from 
eliminating each branch against the resulting 
increase in computation. 

The refinement search kernel is explicitly 
refactored to eliminate branches. This kernel 
attempts to match each background pixel against 
foreground pixels in a neighborhood centered on 
the background pixel position. The CPU 
implementation of this kernel includes a branch in 
the kernel’s inner loop: for each pixel position the 
search is stopped once enough matches are found. 
On the GPU, however, eliminating branches is 
more efficient than reducing the workload by 
terminating the search. Therefore, the OpenCL 
implementation does not include the stopping 
condition, and always iterates through the entire 
inner loop. 

Byte-Wide Fixed-Point and Logical 
Operations 

The Adreno 420 GPU includes native support 
for 16-bit fixed-point data. To support 8-bit data, 
16-bit operations are performed by the hardware, 
with additional operations such as sign extension 
sometimes added by the compiler in order to 
guarantee correct functionality. To minimize 
unnecessary operations, the OpenCL code for all 
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three kernels promotes some 8-bit data to 16-bit 
fixed-point or 32-bit floating-point data types. 

Additionally, the background subtraction 
OpenCL kernel uses a 256-entry lookup table to 
perform a population-count operation (the 
population-count operation counts the number of 
bits in the input word that have a value of one). 

5. ARM CPU NEON-Accelerated 
Implementation 

In the CPU mode of the BDTI Background 
Blur OpenCL application, background subtraction 
and refinement are implemented on the CPU and 
refactored to efficiently utilize the CPU caches. 
The refinement pre-process step is split into 
independent operations: the erosion operation is 
implemented with a call to Qualcomm’s FastCV 
library, and the threshold computation is 
interleaved with the refinement search as 
described below. 

The threshold computation and two 
refinement search passes are pipelined on a scan-
line basis, with a five scan-line delay between the 
first and second refinement search passes. 
Pipelining these functions greatly improves cache 
utilization and is paramount to achieving good 
performance on the CPU. 

Background subtraction and all refinement 
steps are carefully optimized using ARM NEON 
instructions to perform SIMD-parallelized 
operations. NEON optimizations make use of 
NEON’s native support for eight-bit data and 
native population-count instruction. 

6.  Benefits of OpenCL Acceleration 
on the Adreno GPU 

The BDTI Background Blur OpenCL Android 
application illustrates the advantages of the 
Adreno 420 GPU over the ARM CPU, for 
massively parallel algorithms programmed in 
OpenCL. Comparing the application’s behavior in 
the GPU and CPU modes of operation reveals the 
performance benefit of the GPU. 

The computational workloads of the 
background subtraction and refinement kernels 
are data dependent. Furthermore, the 
computational workload’s dependencies on input 
data vary somewhat between the ARM NEON-
optimized code and the OpenCL code. Therefore, 
precise comparisons of performance of the two 
modes can be made only for precisely defined 
operating conditions.  

BDTI has not attempted extensive, rigorous 
performance and power measurements on the 
application under carefully controlled conditions. 
Therefore, results measured by BDTI and 
presented below do not represent a 
comprehensive range of operating conditions and 
should be considered as a coarse estimate. 
However, BDTI has observed the performance of 
both the CPU and GPU modes under conditions 
that can be considered typical. The typical 
difference in performance between the GPU and 
CPU is striking, as discussed below. 

GPU vs. CPU Speed Comparison 
A comparison of video display frame rates 

achieved under typical operating conditions in the 
GPU and CPU modes, respectively, is shown in 
Table 1. Overall, the GPU mode typically achieves 
a frame rate nearly two times higher than that of 
the CPU mode. 

 

Mode 
Typical 

average frame 
rate 

Observed 
range 

GPU 30 fps 25-33 fps 

CPU 16 fps 14-18 fps 

Table 1 Frame rate comparison of GPU and 

CPU modes 

Table 2 shows the approximate time in 
milliseconds per invocation of the compute-
intensive background subtraction and refinement 
kernels on the GPU and CPU. As described in 
Section 5 above, the two refinement search passes 
are tightly interleaved on the CPU, along with part 
of the refinement pre-processing. Therefore, it is 
not practical to individually profile these 
processing steps on the CPU. The background 
subtraction kernel appears to be slightly more than 
two times faster on the GPU compared to the 
CPU, although significant data-dependent timing 
variations occur on both the CPU and GPU. The 
three refinement steps combined are likewise 
roughly twice as fast on the GPU compared to the 
CPU. 

Contour processing requires several additional 
milliseconds of computation on the CPU. In GPU 
mode, contour processing still executes on the 
CPU but occurs in parallel with the OpenCL 
kernels running on the GPU. However, the 
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application incurs some additional overhead in 
both modes for rendering, synchronization, and 
housekeeping, reducing the overall speedup of the 
application to slightly less than a factor of two. 
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Refine
ment 

Pre-
process 

Refine
ment 
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Refine
ment 
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GPU 14 ms 

0.9 ms 5 ms 5 ms 

n/a 

Refinement total: 11 ms 

CPU 30 ms 22 ms 4-7 ms 

Table 2 Kernel duration comparison of GPU 

and CPU implementations, under typical 

conditions 

Note that the CPU mode of the application 
uses only one of the Snapdragon processor’s ARM 
cores. Using two CPU cores instead of one, it is 
possible to achieve a frame rate roughly equivalent 
to that of the GPU, at the cost of slightly higher 
code complexity, and greatly increased power 
consumption.  

7. Conclusions 
As new computer-vision-enabled user 

experiences emerge in mobile, embedded, and 
wearable devices, computational demands will 
continue to rise, while size, cost, and power 
constraints will become more stringent. In many 
products, massively-parallel GPGPU 
implementations of key algorithm kernels will be 
critical to meeting application requirements. 
Qualcomm’s support for OpenCL on the Adreno 
GPU makes this possible on Snapdragon 
application processors. 

As illustrated by the BDTI Background Blur 
OpenCL demo application, offloading compute-
intensive kernels to the Adreno 420 GPU can 
dramatically reduce CPU utilization in a 
computer-vision-enabled application, freeing CPU 
resources to tackle additional applications and 
features. Additionally, offloading compute-
intensive tasks from the CPU can dramatically 
improve power consumption. Because of their 
specialized massively-parallel architectures and 
lower clock rates, GPUs tend to be more power-

efficient than CPUs. Although BDTI did not 
independently measure the power consumption of 
the BDTI Background Blur OpenCL demo 
application, Qualcomm has reported that the 
GPU mode of the demo consumes half as much 
power as the CPU mode when throttling the 
frame rate of the GPU mode to match the highest 
frame rate achieved in the CPU mode. 

However, effective GPU programming and 
code optimization can be tricky. Algorithm 
implementations must be refactored to maximize 
parallelism, and conform to the memory system 
and core architectures of the GPU, as exemplified 
by the considerations discussed in this paper: 

 The application must be architected to 
minimize memory copies between GPU 
and CPU memory spaces. 

 GPU code must carefully manage limited 
fast local memory. 

 Programmers must be aware of GPU core 
architectural characteristics, even when 
programming in a high-level language such 
as OpenCL. For example, code must 
minimize the use of branches and take care 
to utilize the most appropriate SIMD data 
types. 

When implemented with best practices, 
computer-vision functions run efficiently on the 
GPU. Qualcomm’s Adreno GPU with support for 
OpenCL will enable vision functions in a wide 
range of mobile devices and applications. 
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