

© 2015 Berkeley Design Technology, Inc. Page 1

An Independent Evaluation
of

Implementing Computer Vision Functions with OpenCL on the
Qualcomm Adreno 420

By the staff of

Berkeley Design Technology, Inc.

July 2015

OVERVIEW

Computer vision algorithms are becoming increasingly important in mobile, embedded,
and wearable devices and applications. These compute-intensive workloads are challenging
to implement with good performance and power-efficiency. In many applications,
implementing critical portions of computer vision workloads on a general-purpose graphics
processing unit (GPU) is an attractive solution.

Qualcomm enables programming of the Adreno GPU in its Snapdragon application
processors via the open standard OpenCL language and API. OpenCL support enables
programmers to offload computer vision algorithm kernels to the GPU, which in turn
provides speed and power-consumption advantages over a CPU implementation.

BDTI developed an Android application demonstrating computer vision functionality
utilizing the Adreno 420 GPU in Qualcomm’s Snapdragon 805. The BDTI application can
run compute-intensive computer vision functions on the GPU or the CPU, enabling
comparisons of GPU and CPU performance and power-efficiency. This paper discusses the
BDTI application, implementation and optimization techniques used in its development, and
the substantial benefits observed when offloading compute-intensive kernels to the GPU.

© 2015 Berkeley Design Technology, Inc. Page 2

Contents

1. Introduction ... 2
2. Algorithm Overview ... 2
3. Implementation Overview 4
4. Adreno GPU OpenCL-Accelerated

Implementation ... 5
5. ARM CPU NEON-Accelerated

Implementation ... 8
6. Benefits of OpenCL Acceleration on the

Adreno GPU ... 8
7. Conclusions.. 9
8. References .. 9

1. Introduction
Computer vision promises to bring exciting

new features and user experiences to mobile
devices such as smart phones, tablets and
wearables. Many vision-enabled applications are
already commonplace: photo-stitching techniques
enable automatic generation of panoramic views
from a series of images, feature detection and
tracking techniques enable augmented reality
experiences, and so on. And computer vision
algorithms and techniques are advancing rapidly,
promising to deliver many new features and
applications. But computer vision algorithms tend
to be very compute-intensive, threatening to bog
down mobile devices’ CPU cores and memory
bandwidth, and to drain their batteries.

Mobile application processors increasingly
include general-purpose graphics processing units:
graphics processors (GPUs) capable of massively-
parallel general-purpose computing. These
specialized processing engines are often a great fit
for computer vision algorithms, which are
typically characterized by very high data
parallelism (”Data parallelism” refers to the ability
to distribute data among many parallel compute
resources such as those available in a GPU). To
implement computer vision applications, GPUs
can be programmed using the open standard
OpenCL language and API from the Khronos
Group. For example, the Qualcomm’s
Snapdragon 805 application processor includes
the Adreno 420 GPU. The Adreno 420 can be
programmed with OpenCL to offload vision
algorithms from the CPU cores, increasing
performance and reducing power consumption. In
this paper we explore how BDTI used OpenCL to
offload vision algorithms from the CPU to the
GPU in a demonstration application, and discuss

the improvements in performance and power
consumption obtained using the Qualcomm
Adreno GPU in this way.

The BDTI Background Blur OpenCL Android
application was designed to run on the
Snapdragon 805 MDP tablet reference design
from Intrinsyc. The application detects the largest
foreground object in the camera’s view—usually
the user—and displays the video with the
foreground object shown unaltered, and the
background shown with severe blurring applied.
This functionality could be useful, for example, in
a video conference call where we may want to
obscure confidential information on a whiteboard
behind the user, while the image of the user is
seen clearly.

The BDTI Background Blur OpenCL
application includes two modes of operation: in
the default “GPU” mode, the computationally-
intensive portions of the algorithm are offloaded
to the GPU using OpenCL. For comparison, a
“CPU” mode is provided in which the
computationally-intensive portions of the
algorithm are executed on a single CPU core. This
demo therefore clearly illustrates the capabilities of
the Qualcomm Adreno GPU for computer vision
applications.

2. Algorithm Overview
The BDTI Background Blur OpenCL

application employs cutting-edge background
subtraction techniques to separate foreground
objects from background. The algorithm is
illustrated in Figure 1.

The algorithm begins with a background
subtraction kernel. This kernel employs a
modified version of the background subtraction
algorithm described in [1]. This kernel
continuously updates a model of the background,
and compares each pixel in the current frame to
the background model to estimate the
background/foreground classification of the pixel.
The background model contains multiple samples
of pixel intensity and local binary pattern
descriptors for each color component at each
pixel position. At each pixel position, the kernel
searches the samples in the background model for
samples that match the color intensities and local
binary pattern descriptors for the pixel position in
the current frame. If sufficient matches are found,
the pixel is estimated to be in the background.
Otherwise it is estimated as foreground. In
addition to the background/foreground

© 2015 Berkeley Design Technology, Inc. Page 3

segmentation mask, the background subtraction
kernel outputs an estimated background image.

When areas of the foreground closely match
the background in both color and intensity, the
background subtraction kernel can sometimes
misclassify an entire region of foreground pixels as
background. To greatly reduce this artifact, the
application refines the estimated foreground mask
using a proprietary method developed by BDTI
and inspired by k-means clustering. The
refinement compares pixels that are marked as
background in the estimated mask to nearby pixels
marked as foreground in the estimated mask; it
marks a background pixel as foreground if it is
more similar to nearby foreground pixels than it is
similar to the estimated background image. This
refinement procedure fills in portions of the
foreground mask where the foreground pixels are
too close to the background model to be correctly
marked as foreground by the background

subtraction kernel. The refinement method is
performed in three stages:

Preprocessing: in this stage the estimated
foreground mask is eroded with a 3×3 structuring
element to reduce false positives, and a dynamic
threshold is computed for each pixel position. The
dynamic threshold is used in the following stages.

First-pass refinement search: in this stage,
for each pixel marked as background in the
estimated mask, the algorithm searches for nearby
foreground pixel matches, and marks the
background pixel as foreground if enough
matches are found.

Second-pass refinement search: this stage is
identical to the previous stage, further refining the
estimated foreground mask output by the previous
refinement pass.

Finally, the algorithm applies morphological
operations, finds the contours of foreground
objects, selects the largest contour, and removes
all other contours from the foreground mask. The

Input

Frame

Blurred

Frame

Blur

Render to

Display

Camera

Display

Background

Subtraction

Refinement

Preprocess

Refinement

Pass #1

Refinement

Pass #2

Contour

Processing

Blend

Mask

Est.

Background

Frame

Refined

Mask

Mask

Figure 1 BDTI Background Blur Algorithm

© 2015 Berkeley Design Technology, Inc. Page 4

resulting mask is used to blend the original video
frame with a blurred version of the same video
frame. The final refined and contour-processed
mask is also passed to the background subtraction
kernel along with the next video frame, where the
processed mask is used to control thresholds and
background model updates.

To reduce computational requirements, the
background subtraction and refinement kernels
downsample the input frame by a factor of two
horizontally, and by a factor of four vertically.
This downsampling is performed by simply
accessing a subset of the input pixels—a
downsampled image is never physically generated
in memory. Due to this downsampling of the
input, the blend mask is generated at the
downsampled resolution. The blend mask is
passed to OpenGL-ES as a texture, and is
automatically upsampled by the GPU to the
original frame size during texture mapping.
Because the original input image is never
physically downsampled, the sharpness of the
rendered foreground pixels is not impacted.
Therefore, downsampling dramatically reduces
computational demand with negligible impact on
output quality.

3. Implementation Overview
The BDTI Background Blur OpenCL demo

application is architected to realistically portray the
advantages of the Adreno GPU in vision-enabled
applications. The background subtraction and
refinement kernels are very computationally
intensive and comprise the bulk of the processing
in the application. Therefore, optimizations focus
on these kernels. To ensure representative
performance in both the default GPU mode and
in the CPU mode, thorough and reasonable
optimizations are employed in both modes.
Optimizations of the application’s software
architecture are discussed in this section, and
optimizations of the GPU and CPU
implementations of the kernels are discussed in
Section 4 and Section 5, respectively.

When offloading computation from a CPU to
a GPU, a key consideration on most hardware
platforms is the need to copy data between CPU
and GPU memory spaces. Memory copies
introduce latency and consume power, especially
for large buffers such as video frames. The BDTI
Background Blur OpenCL demo application is
therefore designed to minimize the need to move
data between CPU and GPU memory spaces.

The input video frame is needed by the GPU
in both the CPU and GPU modes of operation,
since the GPU renders the output in both modes.
The input video is also needed by the CPU in
CPU mode, but isn’t needed by the CPU when
operating in GPU mode. Video frames are fetched
from the camera directly into GPU memory space,
eliminating the need to copy input frames in GPU
mode.

Figure 2 depicts the partitioning of the
algorithm among processors and APIs on the
Snapdragon application processor. The
background subtraction and refinement kernels
are implemented in OpenCL in the GPU mode,
and in C using ARM NEON compiler intrinsics in
the CPU mode.

The contour processing portion of the
algorithm is implemented on the CPU using
Qualcomm’s FastCV library. Contour tracing
kernels are difficult to parallelize efficiently, and
therefore are not an attractive target for GPU
optimization. Qualcomm’s FastCV library includes
a highly optimized CPU implementation of
contour tracing. In GPU mode, the refined
foreground mask must be copied from GPU
memory to CPU memory for contour processing.
In both modes, after contour processing the
resulting blend mask must be copied to GPU
memory for rendering. Because the subsampled
masks are only a fraction of the size of a video
frame, these copies have a relatively small impact
on speed and power consumption.

In the GPU mode of the application, the CPU
can perform contour processing in parallel with
the background subtraction and refinement
kernels running on the GPU. To enable this
parallel operation of the CPU and GPU, the
application is pipelined as illustrated in Figure 3.
For each frame, background subtraction and
refinement consume the frame directly from the
camera, while the contour processing and
rendering to the display consume a mask, an input
frame, and a blurred frame from the previous
frame period.

The application uses OpenGL-ES to render
output to the display. In addition, the application
uses OpenGL-ES to render the input video frame
to two textures. One is a low-resolution texture,
which results in blurring of the background when
this texture is interpolated back to full resolution
during rendering to the display. The other texture
is a full-resolution texture, which implements a

© 2015 Berkeley Design Technology, Inc. Page 5

one-frame delay needed due to the software
pipelining of the application.

4. Adreno GPU OpenCL-
Accelerated Implementation

In OpenCL, data-parallel algorithm kernels are
broken down into a large number of very small
“work items.” A work item typically represents the
set of operations for processing a single pixel or
small group of pixels. The implementation is
designed to minimize—and hopefully eliminate—
any dependencies between work items so that
work items can execute in parallel. Programmers
generally think of work items as independent
parallel threads, and GPGPUs typically execute
many work items in parallel. Spinning off
hundreds or in some cases even thousands of
work-items enables the GPU to hide memory
latency.

OpenCL also provides Single Instruction
Multiple Data (SIMD) capabilities, with explicit
support for two-, four-, eight-, and sixteen-
element vectors. This enables programmers to
take advantage of additional data parallelism
within a work item.

In the GPU mode of the BDTI Background
Blur OpenCL application, background subtraction
and refinement are offloaded to the Adreno GPU
via OpenCL. The OpenCL code comprises three
kernels: background subtraction with local binary
patterns, refinement pre-process, and refinement
search. The refinement search kernel is executed
twice per frame. All of the OpenCL kernels are
carefully refactored1 and SIMD-optimized to
expose the inherent parallelism of the algorithms
and efficiently utilize the resources of the Adreno
420 GPU architecture. All three kernels operate

1
 Code refactoring is the process of restructuring

existing code without changing its external behavior.

GPU/OpenGL-ES

CPU/Qualcomm FastCV

GPU/OpenCL
Or CPU/NEON

Background

Subtraction

Refinement

Preprocess

Refinement

Pass #1

Refinement

Pass #2

Contour

Processing

Input

Frame

Blend

Mask

Delayed

Frame

Blurred

Frame

Render to

Texture

Render to

Display

Est.BG

Frame

Refined

Mask

Camera

Display

Figure 2 BDTI Background Blur implementation partitioning

© 2015 Berkeley Design Technology, Inc. Page 6

on one pixel position per work-item. Additional
OpenCL implementation and optimization
considerations are discussed below.

Memory Footprint and Local Memory
Data-intensive algorithms usually require

efficient use of fast local memories for optimal
performance. On a CPU, for example, algorithms
can be refactored to optimize utilization of L1
caches. On a GPU, fast local memory must be
explicitly managed, or else performance suffers
dramatically. A collection of work-items is
referred to in OpenCL parlance as a work-group,
and each work-group has access to a pool of fast
local memory.

To minimize the impact of long DDR access
latencies, each work-item copies the state and
input data it needs from DDR into variables and
arrays residing in local memory. The work-item
then operates on this data locally. This idiom is
utilized for all three OpenCL kernels in the BDTI
Background Blur OpenCL application, with some
important differences among the kernels
described below.

In the background subtraction kernel (unlike
most computer vision kernel functions), each
work-item accesses only a minimal amount of data

from neighboring pixel positions. Although the
background model includes many background
samples per pixel position, there is little overlap in
state and input data among the kernel’s work-
items. Therefore, each work-item can copy its
state and input data into local variables and arrays
without duplicating the copies performed for
neighboring pixels –thus avoiding overflowing the
local memory and/or causing redundant accesses
to slow DDR memory.

The OpenCL code for the background
subtraction kernel copies state and data from
DDR into local variables, but it does not explicitly
declare its local copies of input and state data as
residing in local memory. For this kernel it was
not necessary to manage local memory more
explicitly, probably because most local variables
and arrays fit in GPU registers for this kernel, and
the minimal overlap with neighboring pixels
means that even without more explicit techniques
few DDR memory access conflicts occur. This is
in contrast to the refinement pre-processing and
search kernels, where more explicit memory
management is required.

The refinement pre-process and refinement
search kernels both process a neighborhood of
pixels centered on each pixel position. Therefore,

BG Subtract

& Refine
Contour

Processing

Input

Frame

Render to

Texture

Render to

Display

Delayed

Frame

Blurred

Frame

Refined

Mask

Camera Display

Frame N-1

BG Subtract

& Refine
Contour

Processing

Input

Frame

Render to

Texture

Render to

Display

Delayed

Frame

Blurred

Frame

Refined

Mask

Camera Display

Frame N

Figure 3 Pipelining of Background Blur Implementation

© 2015 Berkeley Design Technology, Inc. Page 7

most of the input data for each pixel position
overlaps with the input data of neighboring pixel
positions in these kernels. Explicit management of
GPU local memory is needed to avoid redundant
copies as each work-item copies its input into
local variables and arrays.

Work-items in these kernels are grouped into
an eight-by-eight tile of pixel positions per work-
group. Local arrays are used to store the input
data required for an entire eight-by-eight tile, and
are shared by all of the work-items in the
respective work-group. Each work-item copies a
small portion of the input data for the entire work
group into the local array, and the portions
fetched by work items do not overlap. After
copying the data, work-items within a work-group
synchronize using OpenCL’s “barrier” mechanism
to ensure that all input data has been loaded
before work-items proceed to perform their
computations. The work-items thus cooperate to
fetch overlapping inputs from slow DDR
memory. This implementation technique
eliminates redundant copies of data in local
memory, reduces redundant accesses to DDR, and
helps the GPU hide the latency of slow DDR
memory accesses.

Per-Pixel Pseudo-Random Number
Generation

To achieve desirable statistical properties,
updates of the background model are randomized
in the background subtraction kernel. Because a
pseudo-random number generator updates its
state with each invocation, calling a single random
number generator from each work item would
create a dependency as all work items attempt to
access and update the same state. This
dependency would block the work items from
executing in parallel. Therefore, each work item
includes an independent random number
generator with its own state. To ensure that the
random number generators for all of the work
items are uncorrelated, each random number
generator must be randomly seeded at
initialization. The OpenCL random number
generator code is based on [2].

Conditional Operations and Branches
GPU architectures typically require that many

OpenCL work items share a single instruction
stream. Multiple execution paths due to data-
dependent branches or conditional operations
within a work item can therefore reduce

performance, oftentimes drastically. OpenCL
kernels (and OpenGL shaders) are often
refactored to eliminate branches.

The background subtraction kernel includes
many branches per pixel. However, this kernel’s
performance on the Adreno GPU was about twice
the performance of the CPU version without
requiring refactoring to eliminate the branches.
This may be due to very good correlation between
the execution paths for the work items at
neighboring pixel positions—when a certain
branch is taken for one pixel position, it is likely
for the same branch to be taken for neighboring
pixels. Therefore it is likely that many work items
naturally execute the same instruction stream
despite the presence of branches. However, this is
not always the case, and it may be possible to
further improve the performance of this kernel
with refactoring to eliminate some of the
branches. However, in order to eliminate a
branch, the refactored kernel must sometimes
perform the work of both branch-taken and
branch-not-taken execution paths, thus increasing
the computational workload. Optimizing the
background subtraction kernel further would
therefore require laborious statistical analysis to
balance the increase in parallelism gained from
eliminating each branch against the resulting
increase in computation.

The refinement search kernel is explicitly
refactored to eliminate branches. This kernel
attempts to match each background pixel against
foreground pixels in a neighborhood centered on
the background pixel position. The CPU
implementation of this kernel includes a branch in
the kernel’s inner loop: for each pixel position the
search is stopped once enough matches are found.
On the GPU, however, eliminating branches is
more efficient than reducing the workload by
terminating the search. Therefore, the OpenCL
implementation does not include the stopping
condition, and always iterates through the entire
inner loop.

Byte-Wide Fixed-Point and Logical
Operations

The Adreno 420 GPU includes native support
for 16-bit fixed-point data. To support 8-bit data,
16-bit operations are performed by the hardware,
with additional operations such as sign extension
sometimes added by the compiler in order to
guarantee correct functionality. To minimize
unnecessary operations, the OpenCL code for all

© 2015 Berkeley Design Technology, Inc. Page 8

three kernels promotes some 8-bit data to 16-bit
fixed-point or 32-bit floating-point data types.

Additionally, the background subtraction
OpenCL kernel uses a 256-entry lookup table to
perform a population-count operation (the
population-count operation counts the number of
bits in the input word that have a value of one).

5. ARM CPU NEON-Accelerated
Implementation

In the CPU mode of the BDTI Background
Blur OpenCL application, background subtraction
and refinement are implemented on the CPU and
refactored to efficiently utilize the CPU caches.
The refinement pre-process step is split into
independent operations: the erosion operation is
implemented with a call to Qualcomm’s FastCV
library, and the threshold computation is
interleaved with the refinement search as
described below.

The threshold computation and two
refinement search passes are pipelined on a scan-
line basis, with a five scan-line delay between the
first and second refinement search passes.
Pipelining these functions greatly improves cache
utilization and is paramount to achieving good
performance on the CPU.

Background subtraction and all refinement
steps are carefully optimized using ARM NEON
instructions to perform SIMD-parallelized
operations. NEON optimizations make use of
NEON’s native support for eight-bit data and
native population-count instruction.

6. Benefits of OpenCL Acceleration
on the Adreno GPU

The BDTI Background Blur OpenCL Android
application illustrates the advantages of the
Adreno 420 GPU over the ARM CPU, for
massively parallel algorithms programmed in
OpenCL. Comparing the application’s behavior in
the GPU and CPU modes of operation reveals the
performance benefit of the GPU.

The computational workloads of the
background subtraction and refinement kernels
are data dependent. Furthermore, the
computational workload’s dependencies on input
data vary somewhat between the ARM NEON-
optimized code and the OpenCL code. Therefore,
precise comparisons of performance of the two
modes can be made only for precisely defined
operating conditions.

BDTI has not attempted extensive, rigorous
performance and power measurements on the
application under carefully controlled conditions.
Therefore, results measured by BDTI and
presented below do not represent a
comprehensive range of operating conditions and
should be considered as a coarse estimate.
However, BDTI has observed the performance of
both the CPU and GPU modes under conditions
that can be considered typical. The typical
difference in performance between the GPU and
CPU is striking, as discussed below.

GPU vs. CPU Speed Comparison
A comparison of video display frame rates

achieved under typical operating conditions in the
GPU and CPU modes, respectively, is shown in
Table 1. Overall, the GPU mode typically achieves
a frame rate nearly two times higher than that of
the CPU mode.

Mode
Typical

average frame
rate

Observed
range

GPU 30 fps 25-33 fps

CPU 16 fps 14-18 fps

Table 1 Frame rate comparison of GPU and

CPU modes

Table 2 shows the approximate time in
milliseconds per invocation of the compute-
intensive background subtraction and refinement
kernels on the GPU and CPU. As described in
Section 5 above, the two refinement search passes
are tightly interleaved on the CPU, along with part
of the refinement pre-processing. Therefore, it is
not practical to individually profile these
processing steps on the CPU. The background
subtraction kernel appears to be slightly more than
two times faster on the GPU compared to the
CPU, although significant data-dependent timing
variations occur on both the CPU and GPU. The
three refinement steps combined are likewise
roughly twice as fast on the GPU compared to the
CPU.

Contour processing requires several additional
milliseconds of computation on the CPU. In GPU
mode, contour processing still executes on the
CPU but occurs in parallel with the OpenCL
kernels running on the GPU. However, the

© 2015 Berkeley Design Technology, Inc. Page 9

application incurs some additional overhead in
both modes for rendering, synchronization, and
housekeeping, reducing the overall speedup of the
application to slightly less than a factor of two.

Backgr
ound

Subtrac
tion

Refine
ment

Pre-
process

Refine
ment

Pass #1

Refine
ment

Pass #2

Conto
urs

GPU 14 ms

0.9 ms 5 ms 5 ms

n/a

Refinement total: 11 ms

CPU 30 ms 22 ms 4-7 ms

Table 2 Kernel duration comparison of GPU

and CPU implementations, under typical

conditions

Note that the CPU mode of the application
uses only one of the Snapdragon processor’s ARM
cores. Using two CPU cores instead of one, it is
possible to achieve a frame rate roughly equivalent
to that of the GPU, at the cost of slightly higher
code complexity, and greatly increased power
consumption.

7. Conclusions
As new computer-vision-enabled user

experiences emerge in mobile, embedded, and
wearable devices, computational demands will
continue to rise, while size, cost, and power
constraints will become more stringent. In many
products, massively-parallel GPGPU
implementations of key algorithm kernels will be
critical to meeting application requirements.
Qualcomm’s support for OpenCL on the Adreno
GPU makes this possible on Snapdragon
application processors.

As illustrated by the BDTI Background Blur
OpenCL demo application, offloading compute-
intensive kernels to the Adreno 420 GPU can
dramatically reduce CPU utilization in a
computer-vision-enabled application, freeing CPU
resources to tackle additional applications and
features. Additionally, offloading compute-
intensive tasks from the CPU can dramatically
improve power consumption. Because of their
specialized massively-parallel architectures and
lower clock rates, GPUs tend to be more power-

efficient than CPUs. Although BDTI did not
independently measure the power consumption of
the BDTI Background Blur OpenCL demo
application, Qualcomm has reported that the
GPU mode of the demo consumes half as much
power as the CPU mode when throttling the
frame rate of the GPU mode to match the highest
frame rate achieved in the CPU mode.

However, effective GPU programming and
code optimization can be tricky. Algorithm
implementations must be refactored to maximize
parallelism, and conform to the memory system
and core architectures of the GPU, as exemplified
by the considerations discussed in this paper:

 The application must be architected to
minimize memory copies between GPU
and CPU memory spaces.

 GPU code must carefully manage limited
fast local memory.

 Programmers must be aware of GPU core
architectural characteristics, even when
programming in a high-level language such
as OpenCL. For example, code must
minimize the use of branches and take care
to utilize the most appropriate SIMD data
types.

When implemented with best practices,
computer-vision functions run efficiently on the
GPU. Qualcomm’s Adreno GPU with support for
OpenCL will enable vision functions in a wide
range of mobile devices and applications.

8. References
[1] P.-L. St-Charles and G.-A. Bilodeau.

Improving background subtraction using local
binary similarity patterns. In Applications of
Computer Vision (WACV), 2014 IEEE Computer
Society Winter Conference on, 2014. 1

[2] David B. Thomas. The MWC64X Random
Number Generator. Retrieved from
http://cas.ee.ic.ac.uk/people/dt10/research/rngs-
gpu-mwc64x.htm

