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OVERVIEW 

FPGAs are increasingly used as parallel processing engines for demanding digital 
signal processing applications. Benchmark results show that on highly parallelizable 
workloads, FPGAs can achieve higher performance and superior cost/performance 
compared to digital signal processors (DSPs) and general-purpose CPUs. However, to 
date, FPGAs have been used almost exclusively for fixed-point DSP designs.  FPGAs 
have not been viewed as an effective platform for applications requiring high-performance 
floating-point computations.  FPGA floating-point efficiency and performance has been 
limited due to long processing latencies and routing congestion. In addition, the traditional 
FPGA design flow, based on writing register-transfer-level hardware descriptions in 
Verilog or VHDL, is not well suited to implementing complex floating-point algorithms. 

Altera has developed a new floating-point design flow intended to streamline the 
process of implementing floating-point digital signal processing algorithms on Altera 
FPGAs, and to enable those designs to achieve higher performance and efficiency than 
previously possible. Rather than building a datapath consisting of elementary floating-
point operators (for example, multiplication followed by addition followed by squaring), the 
floating-point compiler generates a fused datapath that combines elementary operators 
into a single function or datapath.  In doing so, it eliminates the redundancies present in 
traditional floating-point FPGA designs. In addition, the Altera design flow is a high-level 
model-based flow using Altera’s DSP Builder Advanced Blockset and the MathWorks’ 
MATLAB and Simulink tools.  Altera hopes that by working at a high level, FPGA 
designers will be able to implement and verify complex floating-point algorithms more 
quickly than would be possible with traditional HDL-based design. 

BDTI performed an independent analysis of Altera’s floating-point DSP design 
flow.  BDTI’s objective was to assess the performance that can be obtained on Altera 
FPGAs for demanding floating-point DSP applications, and to evaluate the ease-of-use of 
Altera’s floating-point DSP design flow. This paper presents BDTI’s findings, along with 
background and methodology details. 
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1. Introduction 

A Floating-point Design Example 
Advances in digital chips are enabling complex 

algorithms that were previously limited to research 
environments to move into the realm of everyday 
embedded computing applications.  For example, for a 
long time, linear algebra (and specifically solving for 
systems with a large set of simultaneous linear 
equations) has been used mainly in research 
environments, where large-scale compute resources are 
available and real-time computation is usually not 
required. Solving for large systems involves either 
matrix inversion or some kind of matrix 
decomposition.  In addition to being very 
computationally demanding, these techniques can 
suffer from numeric instability if sufficiently high 
dynamic range is not used. Therefore, efficient and 
accurate implementation of such algorithms is only 
practical in floating-point devices.  

Altera recently introduced floating-point capability 
in the DSP Builder Advanced Blockset tool chain to 
simplify implementation of floating-point DSP 
algorithms on Altera FPGAs, while improving 
performance and efficiency of floating-point designs 
compared to traditional FPGA design techniques.  In 
order to evaluate the effectiveness of Altera’s approach, 
BDTI focused on a large matrix inversion problem 
implemented using the Cholesky matrix decomposition 
algorithm combined with forward and backward 
substitution. These three processes combined 
constitute a Cholesky solver which finds the inverse of 
a Hermitian positive definite matrix to solve for the 
vector x in a simultaneous set of linear equations of the 
form Ax = B. 

The Cholesky solver is an important algorithm due 
to its increasing use in military radar applications such 
as Space-Time Adaptive Processing (or STAP). In 
addition, the Cholesky decomposition itself, which is 
the core of the solver, is used in many estimation and 
optimization problems where covariance matrices are 
found. The Cholesky decomposition is a very 
computationally demanding algorithm and requires 
high data precision, so floating-point math is necessary. 
In addition to being an important problem in many 
applications, matrix inversion can serve as an example 
of a wide range of floating-point DSP algorithms. For 
example, the Cholesky decomposition uses vector dot 
products and nested loops that are found in a range of 

digital signal processing applications involving linear 
algebra and finite impulse response (FIR) filters.  

Using the Cholesky solver, as described in Section 
4, an Altera Stratix IV FPGA is capable of performing 
3,204 matrix inversions per second on matrices of size 
240×240, running at a clock speed of 200 MHz and at 
an accuracy that exceeds that of the single-precision 
IEEE Standard for Floating-Point Arithmetic (IEEE 
754) number representation. 

The Cholesky solver example evaluated in this 
paper is available at www.altera.com/floatingpoint and 
will be made available by Altera as a design example 
packaged with the DSP Builder Advanced Blockset 
tool chain starting with tool version 11.1. 

Floating-point Design Flow 
Traditionally, FPGAs have not been the platform 

of choice for demanding floating-point applications. 
Although FPGA vendors have offered floating-point 
primitive libraries, the performance of FPGAs in 
floating-point applications has been very limited. The 
inefficiency of traditional floating-point FPGA designs 
is partially due to the deeply pipelined nature and wide 
arithmetic structures of the floating-point operators 
that create large datapath latencies and routing 
congestion. In turn, the latencies create hard-to-manage 
problems in designs with high data dependencies. The 
final result is often a design with a low operating 
frequency. 

The Altera DSP Builder Advanced Blockset tool 
flow attacks these issues at both the architectural level 
and the system design level. The Altera floating-point 
compiler fuses large portions of the datapath into a 
single floating-point function instead of building them 
up by composition of elemental floating-point 

NOTATION AND DEFINITIONS 

M Bold capital letter denotes a matrix. 

z Bold small letter denotes a vector. 

L
*
 The conjugate transpose of matrix L. 

l
*
 The conjugate transpose of element l. 

Hermitian Matrix A square matrix with complex 

entries that is equal to its own conjugate transpose. 

This is the complex extension to a real symmetric 

matrix. 

Positive Definite Matrix A Hermitian matrix M is 

positive definite if z*Mz > 0 for all non-zero complex 

vectors z. The quantity z*Mz is always real because M 

is a Hermitian matrix for the purposes of this paper. 

Cholesky Decomposition A factorization of a 

Hermitian positive definite matrix M into a lower 

triangular matrix L and its conjugate transpose L* such 

that M = LL*. 

Fmax The maximum frequency of an FPGA design. 

http://www.altera.com/floatingpoint
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operators. It does this by analyzing the bit growth in 
the datapath and appropriately choosing the optimum 
input normalization to allocate enough precision 
through the datapath in order to eliminate as many 
normalization and denormalization steps as possible. 
The IEEE 754 format is only used at datapaths 
boundaries; within datapaths, larger mantissa widths are 
used to increase the dynamic range and reduce the need 
for denormalization and normalization functions 
between successive operators. Normalization and 
denormalization functions use barrel shifters of up to 
48-bit range for a single precision floating-point 
number. This consumes significant amount of logic and 
routing resources and is the main reason why floating-
point implementations on FPGAs are not efficient. 
The fused datapath methodology eliminates a significant 
number of these barrel shifters. Multiplications 
involving the larger precision mantissas use Altera’s 
36×36 multiplier mode in Stratix IV and Arria II 
devices. Figure 1(b) shows the fused datapath 
methodology for the simple case of a two adder chain 
as compared to the traditional implementation shown 
in Figure 1(a). The fused datapath in Figure 1(b) 
eliminates the inter-operator redundancy by removing 
the need to denormalize the output of the first adder 
and to normalize the input of the second adder. The 
elimination of the extra logic and routing and the use of 
hard multipliers make timing and latency across 
complex datapaths predictable. Both single- and 
double- precision IEEE 754 floating-point algorithms 

are implemented with reduced logic and higher 
performance. Altera claims that a fused datapath 
contains 50% less logic and 50% less latency than the 
equivalent datapath constructed out of elementary 
operators [1]. As a result of the wider internal data 
representation, on the average, the overall data accuracy 
is higher than that achieved using a library with 
elementary IEEE 754 floating-point operators. 

The Altera floating-point DSP design flow 
incorporates the Altera DSP Builder Advanced 
Blockset, Altera’s Quartus II RTL tool chain, 
ModelSim simulator, as well as MathWorks’ MATLAB 
and Simulink tools. The Simulink environment allows 
the designer to operate at the algorithmic behavioral 
level to describe, debug, and verify complex systems. 
Simulink features such as data type propagation and 
vector data processing are incorporated in the DSP 
Builder Advanced Blockset, enabling a designer to 
perform quick algorithmic design space exploration. 

In the evaluation described in this white paper, 
BDTI used the Altera DSP Builder Advanced Blockset 
tool flow to validate a complex data-type floating-point 
Cholesky solver design example and evaluate the 
efficiency and performance of Altera’s floating-point 
design flow. Section 2 of the paper describes the 
implementation of the Cholesky solver. Section 3 
presents BDTI’s experience with the design flow and 
tool chain. Section 4 presents the performance of the 
implementation on two different Altera FPGAs: the 
high-end Stratix IV EP4SE360H29C2 device and the 
mid-range Arria II EP2AGX125DF25I3 device. 
Finally, Section 5 presents BDTI’s conclusions. 

2. Implementation 

Background 
Sets of linear equations of the form Ax = b arise in 

many applications. Whether it is an optimization 
problem involving linear least squares, a Kalman filter 
for a prediction problem, or MIMO channel 
estimation, the problem remains one of finding a 
numerical solution for a set of linear equations of the 
form Ax = b. When matrix A is symmetric and positive 
definite, which is true for the covariance matrices used 
in these problems, the Cholesky decomposition and 
solver are commonly used. The algorithm finds the 
inverse of matrix A thus solving for vector x in 

      . The Cholesky decomposition is at least twice 
as efficient as other methods such as the LU or QR 
decompositions. Since all these decomposition 
algorithms are recursive in nature and involve division, 
a large numeric dynamic range becomes a necessity as 
the matrix size increases. Most implementations, even 
for matrix sizes as small as 4×4 in MIMO channel 
estimation for example, are performed using floating-
point operations. For larger systems requiring high 
throughput, such as the ones found in military 
applications, the required floating-point operation rate 

Figure 1 (a) Traditional floating-point implementation 

(b) Fused datapath implementation 
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has typically been prohibitive for embedded systems. 
Frequently, designers either abandon the whole 
algorithm for a sub-optimum solution or resort to 

using multiple high-performance floating-point 
processors, raising cost and design effort.  

Architectural Overview 
In our design example, the Cholesky solver is 

implemented in the FPGA as two subsystems operating 
in parallel in a pipelined fashion. The first subsystem 
executes the Cholesky decomposition and forward 
substitution—steps 1 and 2 in the sidebar titled The 
Algorithm.  The second subsystem executes the 
backward substitution—step 3 in the sidebar. Since the 
input matrix is Hermitian and the decomposition 
generates complex conjugate transposed triangular 
matrices, memory utilization is optimized by loading 
only half of the input matrix A and generating only the 
lower triangular matrix, which overwrites A as the latter 
is being consumed. Both subsystems are pipelined, 
utilizing an input stage and a processing stage to allow 
processing to occur in one area of a memory while the 
other half is used for loading new data. The output of 
the decomposition and forward substitution pipeline 
stages go into the input stages of the backward 
substitution, as shown in Figure 2.  

In mathematical terms, the forward substitution of 
equation (6) can be considered a subset of the 
decomposition equation (3) except for the conjugation 

of    
 
, and thus in the implementation, they are 

combined in a single process by appending the 
transpose of vector b to the last row of matrix A 
without incurring any significant latency in processing. 

The core of the decomposition is the complex 
vector dot product engine (also referred to as the 
vector multiplier) in equations (3) and (4). For the 
Stratix IV SE360 device, a vector size (VS) of up to 60 
complex elements is possible, limited by the number of 
available DSP elements in the device, whereas for the 
Arria II GX125 device, a vector size of up to 30 
elements may be implemented. The vector size also 
corresponds to the number of parallel memory reads 
needed to supply the dot product engine with a new set 
of data every clock cycle and thus determines the width 
and partitioning of the dual-port memory used 
internally. For implementation reasons, the memory of 
a matrix of a given size is partitioned into ceil(N/VS) 
banks, where ceil() is the ceiling function and N is the 
size of the matrix. The largest matrix used in this 
evaluation is a Hermitian matrix of size 240×240. The 
size of the matrix is limited by the available memory in 
the device. 

The decomposition is performed one element at a 
time, column-wise, starting from the top left corner, 
proceeding in a vertical zigzag fashion, and ending at 
the bottom right corner. The diagonal element of each 
column is calculated first, followed by all the non-
diagonal elements below it in the same column before 
moving to the diagonal element at the top of the next 
column to the right. The schedule of events and 
iterations is controlled with a three-level nested for 

THE ALGORITHM  

The recursive Cholesky algorithm to solve for vector x in 

Ax = b has three steps: 

Step 1. Decomposition, i.e. finding the lower triangular 

matrix L, where A = LL* 

𝑙  =  𝑎   (1) 

For i = 2 to n, 

𝑙𝑖 =
𝑎𝑖 

𝑙  
  (2) 

For j = 2 to (i-1), 

𝑙𝑖𝑗  = (𝑎𝑖𝑗 −  𝑙𝑖𝑘
𝑗  
𝑘= × 𝑙𝑗𝑘

 ) 𝑙𝑗𝑗  (3) 

end 

𝑙𝑖𝑖 =   𝑎𝑖𝑖 −  (𝑙𝑖𝑘
𝑖  
𝑘= × 𝑙𝑖𝑘

 ) (4) 

end 

Note the dependencies in the equations above. The 

diagonal elements in eq. (4) depend only on elements to 

their left in the same row. Non-diagonal elements depend 

on elements to their left in the same row, and on the 

elements to the left of the corresponding diagonal element 

above them. 

Step 2. Forward substitution, i.e. solving for y in the 

equation Ly = b, 

𝑦 =  𝑏 𝑙    (5) 

For i = 2 to n, 

𝑦𝑖 = (𝑏𝑖 −  𝑦𝑘
𝑖  
𝑘= × 𝑙𝑖𝑘) 𝑙𝑖𝑖  (6) 

end 

Step 3. Backward substitution, i.e. solving for x in the 

equation L* x = y, 

𝑥𝑛 = 𝑦𝑛 𝑙𝑛𝑛
   (7) 

For i = n-1 to 1, 

𝑥𝑖 = (𝑦𝑖 −  𝑥𝑘
𝑛
𝑘=𝑖+ × 𝑙𝑖𝑘

 )/𝑙𝑖𝑖
  (8) 

end 

where, 

n = the dimension of matrix A 

lij = element at row i column j of matrix L 

aij = element at row i column j of matrix A 

yi = element at row i of vector y 

bi = element at row i of vector b 

xi = element at row i of vector x 

The output of step 1 is the Cholesky decomposition, and 

the output of step 3 is the solution x of the linear equation 

Ax = b. Note that the algorithm indirectly finds the inverse 

of matrix A to solve for x = A-1 b. 
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loop. The “For Loop” block in the DSP Builder 
Advanced Blockset is perfect for implementing iterative 
loops. This block abstracts away the intricate control 
signals that would have been necessary in a hand-
written RTL implementation, allowing the designer to 
focus on the algorithm itself. The outermost loop 
implements the column-wise processing for j = 1 to N; 
the middle loop implements the bank-wise processing 
for bank = 1 to ceil(N/VS); and the innermost loop 
processes the row elements for i = 1 to N. The 
processing sequence is shown in Figure 3(a).  

The dot product engine operates on the rows of the 
matrix and calculates up to vector size multiplications 
in the summation term of equations (3), (4), and (6) 
simultaneously in one cycle. For vector dot products 
shorter than vector size, unused terms are masked out 
and are not included in the summation. For dot 
products longer than vector size, partial sums of 
products are calculated and saved at bank boundaries 
until the output of all banks for a given element in that 
row are available for a final summation. The 
summation of the bank outputs is performed in a single 
accumulator loop using the floating-point adder block 
from the DSP Builder Advanced Blockset. This 
feedback loop has a latency of 13 cycles. In order to 
avoid this significant stall while waiting for the 
accumulator to finish, the middle loop in the three-level 
nested loop is the “for Banks” loop rather than the “for 
Rows” loop as one would traditionally have in a 
software implementation. By performing this swap, the 
floating-point accumulator latency is hidden and 
hardware utilization improved. Currently, the DSP 
Builder Advanced Blockset does not automatically add 
loop delay elements to address this type of latency. This 
is because adding a delay element may unintentionally 
change the functionality of a digital signal processing 
feedback loop. Hence, it is the designer’s responsibility 
to specify this value. However, DSP Builder will 
generate an error message indicating to the designer a 
deficiency in the delay value. The designer may 
experiment to find the exact value needed. Figure 3(b) 
shows the computation of the diagonal element eij. The 
dot product that generates this element spans over two 

full-length banks of vector size plus a third partial bank. 
Since the for Banks loop is the middle loop, the full 
value of the eij element is only available after all the 
partial sum-of-products at j=VS and at j=2*VS 
boundaries for all the rows below it are processed. 
These partial sum-of-products are stored temporarily in 
an internal FIFO. 

The choice of the vector size affects the hardware 
efficiency and system latency. If vector size is large 
relative to the matrix size, many terms in the dot 
product are not used until column indices greater than 
vector size are reached thus reducing hardware 
efficiency. Refer to Section 4 for a more detailed 
analysis of the implications of matrix-to-vector size 
choices on latency and hardware utilization. 

The second subsystem performs backward 
substitution. This subsystem has its own input and 
output memory blocks. Like the Cholesky/forward 
substitution subsystem, it is pipelined into an input 
stage and a processing stage. Since the complexity of 
the backward substitution is on the order of N2 
compared to N3 for the decomposition, vector 
processing for the dot product is not employed. 
Instead, a single complex multiplier is used for the dot 
product which is enough to keep pace with the 
Cholesky decomposition and the forward substitution 
subsystem.  

3. Design Flow and Tool Chain 
For this evaluation, Altera provided BDTI with an 

implementation of the Cholesky solver created using 
the DSP Builder Advanced Blockset. BDTI engineers 
installed the Altera and MATLAB tools necessary for 
the evaluation, and took a short training class to 
familiarize themselves with the design flow. BDTI 
engineers then examined the Altera design, simulated it, 
synthesized it, and ran ModelSim RTL simulations, all 
under the Simulink environment. In the process, BDTI 
evaluated the Altera design flow and the performance 
of the Cholesky solver example.  Installation of the tool 
chain was straightforward and painless. 

Figure 2 Process pipelining and memory reuse 
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Simulink is built upon and requires the MATLAB 
framework. The input stimuli for the Cholesky model 
are generated via a MATLAB m-file script. The input 
matrix is synthetically generated to guarantee Hermitian 
positive definiteness. The two main input parameters 
are the matrix size and the vector size. The vector size 
is a design parameter that determines the size of the 
vector dot product engine and the maximum allowable 
matrix size in the synthesized design. In this 
implementation, the maximum matrix size is set to be 
four times the vector size. The input parameter matrix 
size is a user variable and may be of any size equal to or 
smaller than the maximum-allowed matrix size.  

The MATLAB m-file script saves the synthetically 
generated L and x, and the calculated vector y in 
double-precision floating-point format as reference to 
measure the error performance of the Simulink model 
and the synthesized RTL design. 

In the Simulink environment, the Cholesky solver 
design uses blocks from the Altera DSP Builder 
Advanced Blockset, which is a separate Blockset from 
the standard DSP Builder library. The DSP Builder 
Advanced Blockset is geared towards block-based 
design of DSP algorithms and datapaths and uses a 
higher level of abstraction than the standard DSP 
Builder library, which uses more general and elemental 
functional blocks. The library contains over 50 
common trigonometric, arithmetic, and Boolean 
functions in addition to the more complex fast Fourier 
transform (FFT) and FIR filter building blocks. 
Elements from the DSP Builder standard Blockset and 
the DSP Builder Advanced Blockset cannot be mixed 
in a datapath structure at the same hierarchy level; only 
blocks from the DSP Builder Advanced Blockset 
support the floating-point compiler. Blocks from the 
standard Blockset are not optimized for floating-point 
processing. In addition, although importing of hand-
coded HDL is available for the standard Blockset, it is 
not available in the Advanced Blockset since the tool 
cannot perform optimizations at the HDL level. In 

general, the block-based design-entry approach is well 
suited for DSP algorithms, however a text-based 
approach is still more intuitive for designs that are 
control based and involve state machines. 

Starting a simulation in Simulink compiles the 
model, generates HDL code and constraints for the 
Altera Quartus II environment, builds a test bench and 
script files for the ModelSim environment, and runs the 
Simulink model simulation. The time required to run 
the simulation for a single Cholesky solver ranged from 
6 minutes to less than 1 minute depending on the 
matrix size. The Simulink simulation generates detailed 
resource utilization estimates without the need to run a 
Quartus II compile, thus helping the designer to 
quickly determine the device size needed for various 
algorithmic modifications. 

Experiments were performed on the model to 
evaluate the ease of algorithm exploration and the 
corresponding HDL generation.  Input parameters 
such as vector dot product size, matrix size, and data 
type were changed in the stimulus block and 
simulations run. In all cases, the correct RTL code was 
generated within minutes and simulation outputs 
matched the saved MATLAB reference. 

The higher abstraction level of development allows 
faster algorithm space exploration, simulation, and time 
optimized RTL generation. However, the flexibility 
afforded by this new approach requires a lot of 
forethought into the structure of the model before 
starting the high-level block-based design. There is a 
design methodology that needs to be understood and 
followed to support the flexibility of exploring the 
design space with input parameters such as the vector 
size and the matrix size for this example. An 
understanding of some hardware design is still required 
to achieve good throughput rates and resource 
utilization as exemplified in the floating-point 
accumulator section of this model. 

Seven configurations of vector and matrix sizes 
were evaluated for FPGA resource utilization, 

Figure 3 (a) Processing sequence (b) Computation of diagonal element eij includes two partial sum-of-products at j=VS 

and j=2*VS, plus the last remaining partial dot product section 
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maximum achievable clock rate, throughput, and 
functional correctness. FPGA design constraints such 
as clock rate, device selection, and speed grade are 
specified in the Simulink environment. 

All configurations were synthesized using the 
Quartus II development software, which may be 
launched directly from the Simulink environment. The 
results reported by the Quartus II software for a single 
routing run achieve clock rates of 154 MHz to 203 
MHz depending on the configuration. The Design 
Space Explorer tool was used to achieve higher clock 
rates. Available as part of the Quartus II software, 
Design Space Explorer automatically runs multiple 
router passes using a different seed for each pass. The 
route with the best clock rate is saved. This is an 
automatic process requiring no user intervention and 
took 4 to 6 hours to converge on an optimized 
implementation for the Cholesky solver design. The 
improvement achieved ranged from 8% to 23% 
depending on the matrix size and the vector size used. 
For example, a matrix size of 60×60 with a vector size 
of 60 achieved 202 MHz using Design Space Explorer 
compared to a single routing fit of 154 MHz. 

The FPGA resource utilization is consistent with 
expectations for such a design: memory use is 
proportional to the square of the matrix size, and 
multiplier usage increases linearly with the vector size. 
Due to the memory granularity in an FPGA, it is 
generally difficult to accurately determine memory 
requirements. For example, a synthesis tool may 
choose to use memory blocks to accommodate for 
signal delays. However, in this example, the majority of 
the memory is consumed by matrix data storage. The 
multiplier utilization is more predicable: the vector 
multiplier requires sixteen 18×18 DSP elements per 
complex valued floating-point multiplication. Given a 
vector size of 60 complex floating-point values, 960 
18×18 DSP elements are required for the vector dot 
product engine. Refer to Section 4 for a breakdown of 
the resource requirements for each of the seven 
configurations.  

Throughput and performance were evaluated at the 
RTL level using a modified version of the design. A 
counter that is enabled by the vector multiplier active 
signal was added to the design in the Simulink 
schematic capture environment to determine the 
processing efficiency. The actual processing time of the 
Cholesky solver was determined by measurement in the 
ModelSim simulation environment. For all 
configurations, the Simulink processing time 
calculations matched the ModelSim measurements.  

The performance results listed in Section 4 were 
achieved with the Design Space Explorer tool; no hand 
optimization or floor planning was performed. Upon a 
closer analysis, BDTI found that the worst case delays 

in the design are due to routing rather than chains of 
logic, which indicates that the tool has efficiently 
pipelined the datapath. The tool chain achieved usable 
speeds and resource utilization without any low level 
design modifications or floor planning. 

A post-simulation script calculates the difference 
between the Simulink IEEE 754 single-precision 
floating-point output and the synthetically generated 
MATLAB double-precision floating-point reference. 
Similarly, the script calculates the difference between 
the output of the ModelSim simulation of the single-
precision floating-point synthesized RTL created using 
DSP Builder Advanced Blockset and that of the 
synthetically generated MATLAB double-precision 
floating-point reference. Refer to Section 4 for the 
error performance results.  

Training for the DSP Builder Advanced Blockset 
design flow entails a 4-hour class by Altera and 
approximately 10 hours of on-line tutorials and demos. 
In addition, BDTI spent close to 90 hours exploring 
the Cholesky solver model and making modifications 
for a hands-on experience. The time and effort 
required to get up to speed with the tool chain will 
depend on the skills and background of the designer. A 
seasoned engineer with both Simulink block-based 
design and FPGA hardware design experience will 
likely find the DSP Builder Advanced Blockset 
approach efficient and easy to use. For an FPGA 
designer with little or no knowledge of MATLAB and 
Simulink, designing at a higher level of abstraction may 
represent a new way of thinking and thus an initial 
challenge, entailing a significant learning curve. Once 
the methodology is mastered, the designer can achieve 
significantly faster design cycles than an HDL 
approach. One can focus on implementing the 
algorithm and not worry about hardware design details 
such as pipelining. Simulation time is significantly 
reduced as a full functional simulation in ModelSim can 
be done once the majority of functional verification has 
been completed first in the Simulink environment.  

The learning curve may be less steep for an 
engineer with system-level design background who has 
little or no skills in hardware design. Although the tool 
chain integrates hardware compilation, synthesis, 
routing, and automatic script generation within the 
Simulink environment and abstracts away many 
complex design concepts such as pipelining and signal 
vectorizing, some knowledge of hardware design is still 
needed to complete an implementation. 

4. Performance Results 
This section presents the results of BDTI’s 

independent evaluation of the Altera Cholesky solver 
floating-point implementation example. 
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All designs used Altera’s DSP Builder Advanced 
Blockset 11.0, implemented using MathWorks’ 
MATLAB 7.10, Simulink 7.5, and built with Quartus II 
design software version 11.0. The RTL simulations 
were done using Altera ModelSim 6.6d. The designs 
were built for two Altera 40-nm FPGAs: the high-end 
Stratix IV EP4SE360H29C2 device with -2 speed 
grade, and the mid-range Arria II EP2AGX125DF25I3 
with -3 speed grade. (These are the fastest grades for 
each device.) In all cases, Design Space Explorer was 
employed to optimize the clock rate (Fmax). 

A total of seven cases were simulated and built: 
four matrix sizes with a vector size of 60, and three 
matrix sizes with a vector size of 30. Resource 
utilization, performance, and accuracy results were 
recorded for each case. Table 1 lists the resource 
utilization and clock speed achieved for each 
configuration. 

The Cholesky solver design provides a matrix size 
parameter. At runtime, matrix sizes smaller than the 
maximum design size may be used.  For the resource 

utilization results presented in Table 1, each 
configuration was synthesized with the maximum 
matrix size parameter equal to the matrix size under 
evaluation in order to get the actual resources 
consumed by the tested matrix size. 

It should be noted that a very simple design 
consisting of a single or a few floating-point operators 
may run much faster than the clock rates achieved in 
the Cholesky solver example shown in Table 1. This, 
however, is not a particularly meaningful comparison 
because routing congestion tends to severely limit 
performance as floating-point designs get more 
complex. 

Table 2 shows the performance of the Cholesky 
solver implementation for the seven configurations. 
The vector multiplier utilization percentages were 
calculated by dividing the vector multiplier active cycles 
by the total cycles consumed by the Cholesky solver, 
both of which were reported by Simulink. Note that 
this utilization does not take into account the non-valid 
terms in the dot product engine due to the triangular 

Device Configuration 
(Matrix Size/ 
Vector Size 

Logic 
Elements 

Used 
(LEs / 

% of Total) 

DSP Blocks 
Used (18x18 
Multipliers / 
% of Total) 

Memory  
(Size / % Total) 

Clock 
Rate 
(Fmax, 
MHz) 

M144K 
(Blocks) 

M9K 
(Blocks) 

MLAB 
(64-bit 

Blocks) 

S
tr

a
ti

x
 I

V
 

E
P

4
S

E
3
6
0
H

2
9
C

2
 

240×240 / 60 162K / 57% 1,014 / 98% 0 / 0% 
899 / 
72% 

13.4K / 
9% 

218 

180×180 / 60 133K / 47% 1,014 / 98% 0 / 0% 
771 / 
60% 

4.7K / 
3% 

224 

120×120 / 60 131K / 46% 1,014 / 98% 0 / 0% 
276 / 
60% 

4.6K / 
3% 

225 

60×60 / 60 143K / 50% 1,014 / 98% 0 / 0% 
66 / 
5% 

8.1K / 
6% 

202 

A
rr

ia
 I

I 

E
P

2
A

G
X

12
5

D
F

2
5
I3

 120×120 / 30 63K / 64% 534    / 93% N/A 
440 / 
60% 

1.3K / 
3% 

214 

60×60 / 30 64K / 65% 534    / 93% N/A 
284 / 
39% 

1.2K / 
3% 

228 

30×30 / 30 67K / 68% 534    / 93% N/A 
226 / 
31% 

3.0K / 
6% 

207 

 
Table 1 Resource utilization and clock speed 

Configuration 
(Matrix Size/ 
Vector Size 

Throughput 
Reported by 

Simulink 
(Matrices/sec) 

 

Throughput 
Reported by 
ModelSim 

(Matrices/sec)  

Vector Multiplier Utilization 
 

Reported by 
Simulink 

Reported by 
ModelSim 

240×240 / 60 3,204 3,204 88% 88% 

180×180 / 60 6,113 6,113 78% 78% 

120×120 / 60 12,680 12,680 58% 58% 

60×60 / 60 28,998 28,998 27% 27% 

120×120 / 30 9,921 9,921 69% 69% 

60×60 / 30 27,886 27,886 33% 33% 

30×30 / 30 59,665 59,665 14% 14% 

 
Table 2 Performance of the Cholesky solver 
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nature of the input matrix. It indicates the utilization of 
the dot product engine as a single working unit. The 
performance is given for a 200-MHz clock rate. As the 
table shows, the Simulink and ModelSim calculations 
match. The throughput is calculated by dividing 200 
MHz by the cycles consumed per Cholesky solver 
execution. Since the backward substitution subsystem 
executes in parallel and with lower latency than the 
Cholesky decomposition, the overall throughput is not 
affected by the backward substitution subsystem. The 
latency for each case is the inverse of the throughput. 
The dot product engine in the Cholesky decomposition 
and forward substitution is the core of the algorithm 
and its utilization percentage in Table 2 is a good 
measure of the efficiency of the implementation. Note 
how the efficiency goes down as the ratio of matrix size 
to vector size approaches 1:1. Hypothetically speaking, 
for smaller covariance matrices, the decomposition of 
multiple matrices can be interleaved and computed by 

the same datapath. This time division multiplexing 
increases the efficiency as long as the numerical value 
of the number of matrices times the matrix size is 
larger than the latency of a single decomposition.  

The choice of vector size relative to matrix size is a 
compromise and is application dependent. If the vector 
size is much smaller than the matrix size, the design will 
be resource efficient at the expense of latency. On the 
other hand, if the vector size is close or equal to the 
matrix size then the latency will be shorter at the 
expense of resource utilization. In general, a vector size 
equal to a quarter of the matrix size is a good 
compromise. Figure 4 and Figure 5 show the effect of 
various vector sizes and matrix sizes on resource 
utilization, throughput, and latency.  

 Table 3 shows the error performance of the 
Cholesky solver for both the Simulink simulation and 
the RTL implementation using single-precision 
floating-point operations. The error is calculated by 
comparing the output of each of the Simulink and 

Table 3 Error performance of the Simulink model and the synthesized RTL 

Matrix Size 
/Vector Size 

Function 
MathWorks Simulink 

IEEE 754 Floating Point 
Single Precision 

 

(Norm / Max Error) 

Altera’s DSP Builder Synthesized 
RTL Floating Point  

Single Precision 

(With Fused Datapath Methodology) 
(Norm / Max Error) 

2
4
0
×

2
4
0
 

/
 6

0
 Cholesky decomposition 3.53e-5 / 2.84e-6 2.01e-5 / 2.71e-6 

Forward substitution 5.06e-4 / 9.44e-5 1.87e-4 / 2.88e-5 

Backward substitution 2.29e-5 / 3.74e-6 1.04e-5 / 1.27e-6 

6
0
×

 

6
0
 

/
 6

0
 Cholesky decomposition 8.89e-6 / 1.28e-6 3.97e-6 / 6.20e-7 

Forward substitution 9.35e-5 / 3.41e-5 2.26e-5 / 5.70e-6 

Backward substitution 1.98e-5 / 6.18e-6 4.13e-6 / 1.15e-6 

12
0
×

12
0
 

/
 3

0
 Cholesky decomposition 1.38e-5 / 1.20e-6 8.70e-6 / 1.41e-6 

Forward substitution 1.26e-4 / 2.65e-5 5.95e-5 / 1.21e-5 

Backward substitution 1.17e-5 / 2.65e-6 5.80e-6 / 1.07e-6 

3
0
×

 

3
0
 

/
 3

0
 Cholesky decomposition 3.33e-6 / 7.68e-7 1.80e-6 / 3.37e-7 

Forward substitution 2.20e-5 / 9.44e-6 6.90e-6 / 2.24e-6 

Backward substitution 8.59e-6 / 4.09e-6 2.62e-6 / 1.09e-6 

 

Figure 4 Effect of vector size 

Vector dot product engine utilization vs. vector size 

Throughput vs. vector size 

Latency vs. vector size 

Vector size 
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Matrix size = 128 

Matrix size = 128 
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Figure 5 Effect of matrix size 

Vector dot product engine utilization vs. matrix size 

Throughput vs. matrix size 

Matrix size 
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Vector size = 30 

Vector size = 30 

Vector size = 30 

Latency vs. matrix size 
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ModelSim RTL simulations with the synthetically 
generated double-precision floating-point references L, 
x, and y. On average, the RTL implementation benefits 
from the fused datapath methodology and achieves 
higher precision than the standard IEEE 754 single-
precision implementation as demonstrated by 
comparing the Norm in columns (3) and (4) in Table 3. 
We use the Frobenius Norm to get a measure of the 
overall error magnitude in the resultant matrix (or 
vector); it is calculated by: 

‖ ‖ = √∑∑|   |
 

 

 = 

 

 = 

 

Where, 
N is the size of the matrix, 
i,j are the row and column indices of the matrix 
respectively, and 
eij is the error in the matrix element (i,j). 

The Frobenius Norm for a vector is similar to that 
of a matrix but summation is only performed in one 
dimension. The maximum error is the maximum 
absolute error over all the elements eij in a matrix, or 
over all the elements ei in a column vector.  

5. Conclusions 
In this paper, we evaluated a new approach to 

implementation of floating-point DSP algorithms on 
FPGAs using Altera’s DSP Builder Advanced Blockset 
design flow. This approach allows the designer to work 
at the algorithmic behavioral level in the Simulink 
environment. The tool chain combines and integrates 
the algorithm modeling and simulation, RTL 
generation, synthesis, place and route, and design 
verification stages within the Simulink environment. 
This integration enables quick development and rapid 
design space exploration both at the algorithmic level 
and at the FPGA level, and ultimately reduces overall 
design effort. Once the algorithm is modeled and 
debugged at a high level, the design can be synthesized, 
and targeted to an Altera FPGA. 

 For the purpose of this evaluation, the design 
example was a single-precision complex-data IEEE 754 
floating-point Cholesky solver modeled in Simulink 
using the Altera DSP Builder Advanced Blockset. The 
design achieved a performance of 3,204 complex 
floating-point Cholesky solver executions per second 
with a matrix of size 240×240 at 200 MHz on a Stratix 
IV S360 FPGA device. This performance was achieved 
using the Altera DSP Builder Advanced Blockset tool 
flow (including Quartus II software and the Design 
Space Explorer tool) with no hand optimization or 
floor planning. Starting from a high-level block-based 
design in Simulink, the tool chain automatically 
pipelined, time optimized, and synthesized the design 
to achieve usable speeds and resource utilization. 

The Altera floating-point DSP design flow 
incorporates the Altera DSP Builder Advanced 

Blockset, Altera’s Quartus II RTL tool chain, and 
ModelSim simulator, as well as MathWorks’ MATLAB 
and Simulink tools. The Simulink environment allows 
the designer to operate at the algorithmic behavioral 
level to describe, debug, and verify complex systems. 
Simulink features such as data type propagation and 
vector data processing are incorporated in the DSP 
Builder Advanced Blockset to enable a designer to 
perform quick algorithmic design space exploration. 

The Altera floating-point design flow simplifies the 
process of implementing complex floating-point DSP 
algorithms on an FPGA by streamlining the tools 
under a single platform. With its fused datapath 
methodology, complex floating-point datapaths are 
implemented with higher performance and efficiency 
than previously possible. 

However, this new approach also entails a 
significant learning curve for using the DSP Builder 
Advanced Blockset. This is especially true for a 
designer not familiar with MATLAB and Simulink. The 
block-based design-entry approach may present an 
initial challenge for a traditional hardware designer. In 
addition, there is a design methodology that should be 
understood and followed to support the flexibility 
afforded by Simulink. Careful forethought is necessary 
to create a design structure that allows for algorithm 
space exploration, such as that performed with matrix 
and vector sizes in the example presented in this paper. 

Currently, designs using the DSP Builder Advanced 
Blockset are limited to the elements provided by the 
blockset to achieve optimized performance. Elements 
from the standard DSP Builder Blockset are not 
optimized with the floating-point compiler nor can be 
mixed with the Advanced Blockset at the same 
hierarchy level. Hand coded HDL blocks may only be 
imported into the Standard Blockset. Additionally, the 
DSP Builder Advanced Blockset is geared towards DSP 
implementations and may have limited use for designs 
involving heavy control and state machines. 

Currently sampling, the next-generation 28-nm 
Stratix V and Arria V FPGAs contain a significantly 
larger number of multipliers and memory capacity. 
With the new variable-precision DSP block, and the 
higher precision 27×27 multiplier mode, a floating-
point multiplication will require fewer resources than it 
currently does in the Stratix IV and Arria II devices. 
These enhancements and the potentially greater 
floating-point performance will further enable the use 
of floating-point designs on next-generation FPGAs. 
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