


## Measuring and Improving User Experience

**VPQM 2015** 


Jeff Bier | February 5, 2015

#### **My Benchmarking Journey**

BDTi

- 1994: Benchmarking processor cores for digital signal processing applications
  - Measuring: Speed, cost, energy efficiency
  - But what about ease of use, support, roadmap risk?



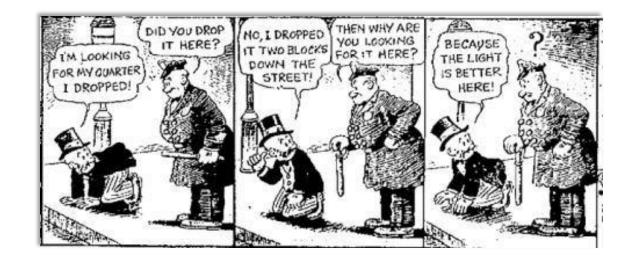


- 2014: Benchmarking smartphones
  - Measuring: User experience
  - But do we really know what "user experience" is?



#### Pitfall: Whole vs. Parts




The performance (or energy efficiency, or user experience, or...) of a system is not equal to the sum of the performance of the individual elements



www.treehugger.com

#### Pitfall: No Free Lunch







www.environmentteam.com

## For Example



| Table 1      | intel Z2580    |       |         | Samsung Exynos   |       |         |                         |       |         |                        |       |         |                |       |         |
|--------------|----------------|-------|---------|------------------|-------|---------|-------------------------|-------|---------|------------------------|-------|---------|----------------|-------|---------|
| Processor    | (CloverTrail+) |       |         | 5250             |       |         | Samsung Exynos Octa     |       |         | Qualcomm APQ8064T      |       |         | Nvidia Tegra 3 |       |         |
| Phone        | Lenovo K900    |       |         | Samsung Nexus 10 |       |         | Samsung Galaxy S4 i9500 |       |         | Samsung Galaxy S4 i377 |       |         | Asus Nexus 7   |       |         |
| Core         | Saltwell x2    |       |         | Arm A15 x2       |       |         | Arm A15 x4 + A7 x4      |       |         | Krait 300 x4           |       |         | Arm A9 x4      |       |         |
| Speed        | 2GHz           |       |         | 1.7GHz           |       |         | 1.6GHz                  |       |         | 1.9GHz                 |       |         | 1.3GHz         |       |         |
|              |                | 0.2   | Display |                  | 0.5   | Display |                         | 0.18  | Display |                        | 0.176 | Display |                | 0.234 | Display |
| Display      | Score          | Avg I | Peak I  | Score            | Avg I | Peak I  | Score                   | Avg I | Peak I  | Score                  | Avg I | Peak I  | Score          | Avg I | Peak I  |
| RAM          | 8703           | 0.55  | 0.9     | 2243             | 1.42  | 1.63    | 3838                    | 1.27  | 1.56    | 4235                   | 0.563 | 1.084   | 1529           | 0.389 | 0.682   |
| CPU          | 5547           | 0.85  | 1.05    | 3104             | 0.98  | 1.23    | 5277                    | 1.38  | 1.71    | 5378                   | 1.794 | 2.104   | 2886           | 0.896 | 1.186   |
| 2D graphics  | 1579           | 0.235 | 0.724   | 1478             | 0.46  | 1.15    | 1624                    | 0.276 | 0.8     | 1549                   | 0.409 | 1.104   | 298            | 0.217 | 0.511   |
| 3D graphics  | 6664           | 0.27  | 0.61    | 3819             | 0.72  | 1.37    | 8653                    | 0.368 | 0.96    | 6628                   | 0.578 | 1.404   | 1188           | 0.458 | 0.826   |
| Pi           | 1.33           | 0.366 | 0.97    | 1.26             | 0.459 | 1.73    | 1.4                     | 0.483 | 1.24    | 1.9                    | 0.233 | 0.733   | 1.56           | 0.38  | 0.766   |
| 1080p Record |                | 0.737 | 1.27    |                  | 1.56  | 3.6     |                         | 0.772 | 1.15    |                        | 0.682 | 1.13    |                |       |         |

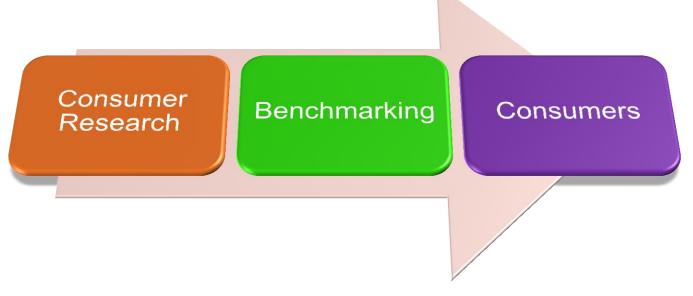
Source: ABI Kesearcn

#### **How Should We Benchmark Smartphones?**



Benchmarks should mirror the tasks that users actually perform

Benchmarks should measure the metrics that users actually observe


I.e., we should benchmark user experience

#### **Easier Said Than Done...**



- There are many types of users with different use patterns and preferences... and regional variations
- Popular apps are generally not suited to use as benchmarks
- Building realistic proxy apps is expensive and time-consuming
- "Performance" is not a simple metric
- Results from different tests must be combined very careful to obtain meaningful aggregate metrics

# Certimo: User Experience Ratings For Smart Devices 11 In A Unique Approach



#### Consumer Research

- User research data
- Consumer usage patterns
- By region

#### Benchmarking

- Performance, battery and display
- Lab-run tests
- Ratings weighted by UX data
- All ratings certified by BDTI



#### Consumers

- Educate consumers on UX
- Deliver UX ratings at scale



#### **Certimo Benchmark Design Philosophy**





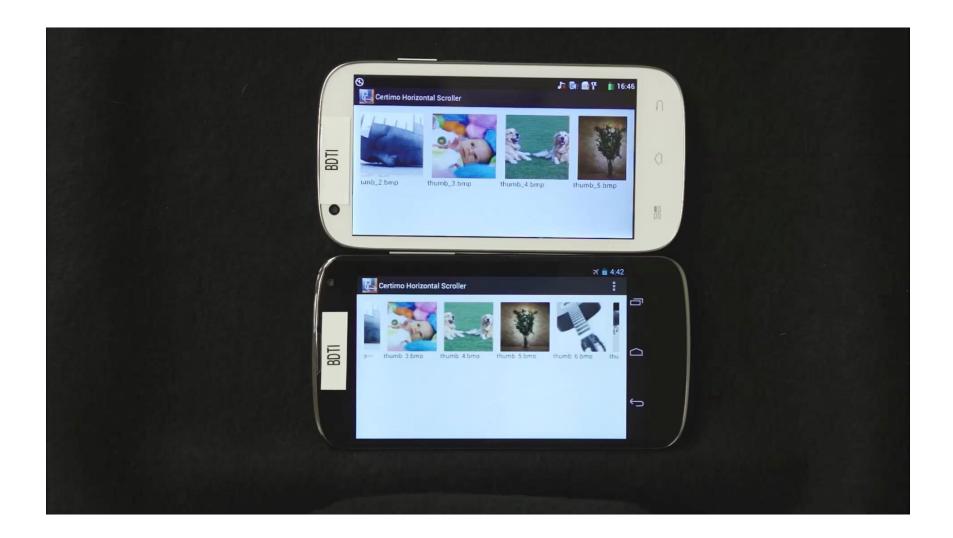
#### Consumer usage data

- Develop benchmark tests that reflect actual use cases
- Weight benchmark results based on usage data



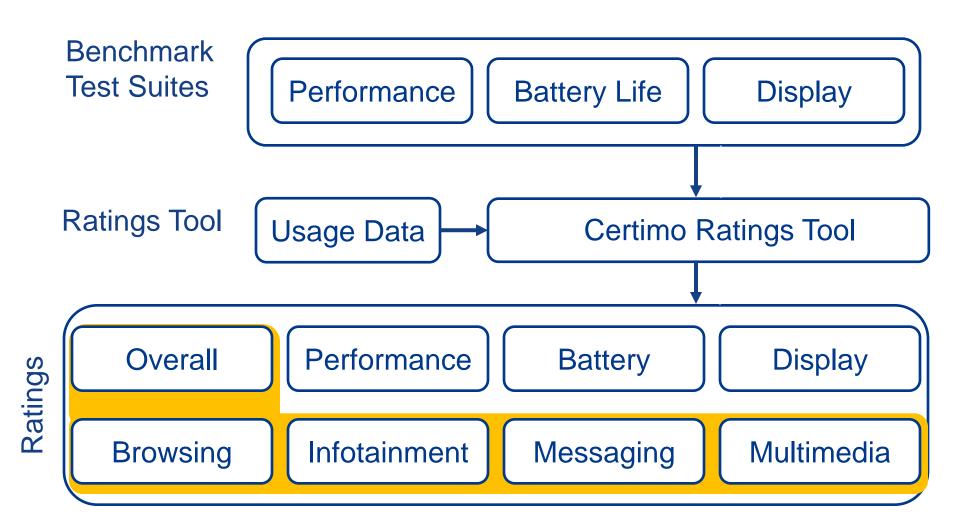
#### Key factors important to user experience

- Performance
- Battery Life
- Display Quality




#### Measure at the system level

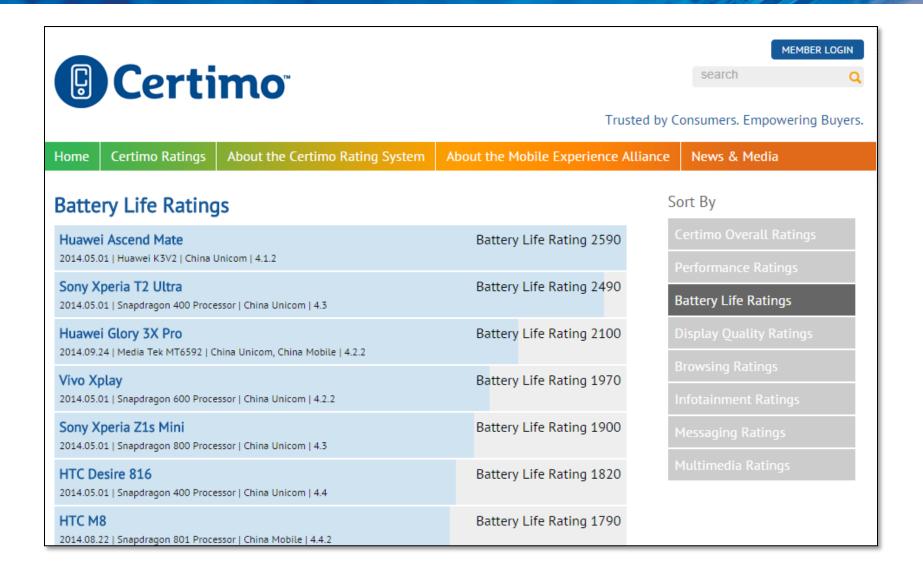
- ~40 system-level tests
- Not individual components in isolation
  - Sum of the parts *NOT* equal to the whole


### **Example: Certimo Photo Scroller Test**





## Certimo Architecture Overview






Certimo

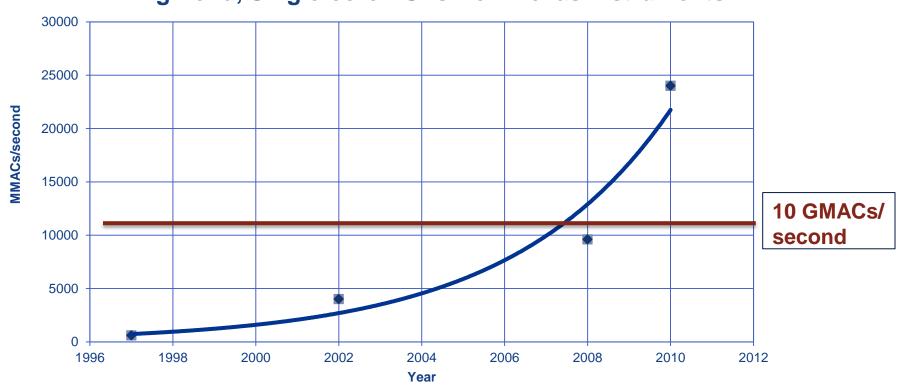
#### **Example Certimo Published Results**





#### **User Experience**




- "Forming preferences is akin to riding a bicycle; we can do it easily but cannot easily explain how." [Wilson and Schooler, 1991]
- "The colour of the mug was shown to influence participants' rating of the coffee." [Van Doorn et al., 2014]
- "... reasoning interferes with better initial choice among non-experts." [Lopes, 2014]



www.iseekgolf.com



DSP Performance: High-end, Single-core DSPs from Texas Instruments



Source: BDTI Analysis

#### The Evolution of Vision Technology



**Computer vision:** research and fundamental technology for extracting meaning from images



**Machine vision**: factory applications



**Embedded vision**: thousands of applications

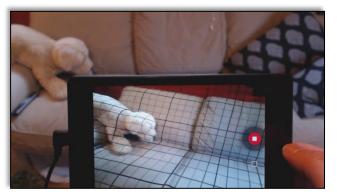
- Consumer, automotive, medical, defense, retail, gaming, security, education, transportation, ...
- Embedded systems, mobile devices,
   PCs and the cloud







### **Embedded Vision Will Change User Experience**






www.incrediblethings.com







**Abound Labs** 

Saving screenshot...

Smart stay

Smart scro

Smart stay

you are looking at it

Smart stay detects your eyes with the front camera so that the screen stays on when

Copied to clipboard

ОК



# How Embedded Vision Can Help Us Understand User Experience





Living Website Technologies



Fraunhofer



**Philips** 



HomeHealthTesting.com

# **Empowering Product Creators to Harness Embedded Vision**



The Embedded Vision Alliance (<u>www.Embedded-Vision.com</u>) is a partnership of 47 leading embedded vision technology suppliers

## Mission: Inspire and empower product creators to incorporate visual intelligence into their products



- The Alliance provides low-cost, high-quality technical educational resources for engineers
- Member companies position themselves as leaders to thousands of product creators via the Alliance web site and conferences







Embedded Vision Insights
The Latest Developments on Designing Machines that See

#### **Alliance Member Companies**

































































































For more information, visit www.Embedded-Vision.com

### Embedded Vision Summit: May 12, 2015 — Santa Clara, CA



## The only industry event focused on enabling engineers to create "machines that see"

• "Good balance of technical content and application-driven examples."

#### **Embedded Vision Summit 2015 highlights:**

- Inspiring keynotes by leading innovators
- Full day of high-quality, practically-oriented technical talks
- Demos of the latest apps and technologies
- In-depth pre- and post-Summit workshops

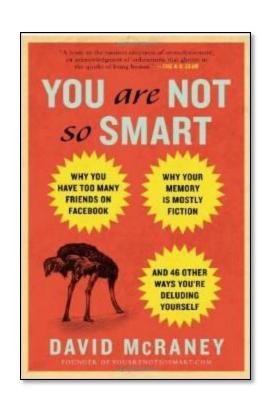
Registration open at www.EmbeddedVisionSummit.com

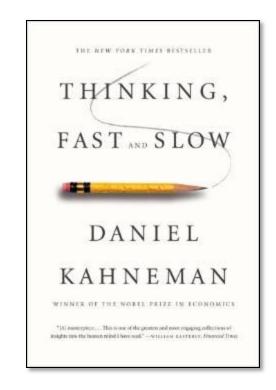


Ren Wu, Baidu



Mike Aldred, Dyson


#### Conclusions




- We need a better understanding of what drives user satisfaction
- Embedded vision can help with this...
- While also complicating it, by enabling new types of products, capabilities and interactions
- Benchmarks must be thoughtfully designed and carefully executed
- Benchmark design should be driven by user experience

### **Recommended Reading**









# THANK YOU

Berkeley Design Technology, Inc.

1646 North California Blvd., Suite 220, Walnut Creek, CA 94596 USA | t: +1 (925) 954-1411 | f: +1 (925) 954-1423