对Altera 28 nm FPGA浮点DSP能效的

独立评估

作者: Berkeley设计技术有限公司员工

2013年2月

简介

FPGA作为并行处理引擎,越来越广泛地用于大计算量的数字信号处理(DSP)应用 中。基准测试结果表明,对于并行度很高的工作负载,与数字信号处理器和通用 CPU相比,FPGA性能更好,性价比更高。然而,更好的性能也通常带来了更高的 功耗,以及较低的能效,这在嵌入式处理应用中是个问题。

Altera最近推出了浮点设计流程,目的是在Altera FPGA上简单方便的实现浮点DSP 算法,与以前相比,进一步提高设计性能和资源使用效率。在以前的白皮书中[1], BDTI对Altera FPGA进行了独立分析,评估其在大计算量浮点DSP应用中的性能, 以及Altera浮点DSP设计流程的效率。

随后, BDTI独立分析了Altera FPGA在大计算量浮点DSP应用中的功耗和能效。 本白皮书介绍BDTI的此项评估结果。

目录

1.	引言	2
2.	浮点设计实例	3
3.	功耗测量方法	3
4.	功耗结果	5
5.	结论	6
6.	参考文献	6
附	录	.7

1. 引言

选择高性能嵌入式处理器时,由于很多系 统必须工作在有限的空间中,在移动环境 下,或者由电池供电,因此,功耗和能效 非常重要。由于处理器的大部分功耗都转 变成热量,因此,功耗较低的器件只需要 较少的散热措施就可以避免过热。这样, 可以实现更小的系统,采用更小的电池。 然而,低功耗处理器并不一定意味着高能 效。能耗是由功耗和时间相乘决定的。在 很多情况下,低功耗处理器的时间更长,这 抵消了低功耗的优势。通常,低功耗处理 器的性能达不到要求,而高性能处理器的 功耗可能会高到无法接受的程度。

在嵌入式计算应用中,大计算量的浮点算 法已经很常见了。其实例包括,从先进军 用雷达的空时自适应处理(即,STAP),到 第四代长期发展(4G LTE)蜂窝标准的多 输入多输出(MIMO)通信信道估算等。这 些复杂的算法需要高度并行的处理方法, 它们工作在有限的空间以及小型轻便包 装等环境中,因此,要求降低功耗。这类 环境的一个例子是军用无人机(UAV)搭载 的移动军用天线。这些应用不仅要求低功 耗以减小散热,延长电池使用时间,而且 还要求较高的计算性能,以便在最短的时 间内完成给定的任务。用于评估浮点处理 器能效的常用标准是GFLOPS/W,即每瓦 功耗所达到的性能;性能以每秒完成多少 个十亿次浮点操作来衡量,此次评估,我 们也采用GFLOPS/W作为标准。

处理器供应商一般会发表峰值GFLOPS数 据。相似的,报出的能效通常是以峰值 GFLOPS除以功耗。这些数值假定处理器 中的所有浮点功能单元以器件的最大时 钟频率运行。这些指标通常非常乐观,不 能反映典型应用。在本次分析中,我们采 用了更实际的另一种方法:对于两种特定 的复杂算法实现,我们既测量浮点性能, 也测量功耗。Altera最近在DSP Builder高 级模块库工具链中引入了浮点功能,以简 化浮点DSP算法在Altera FPGA上的实现, 与传统的FPGA设计方法相比,也同时提 高了浮点设计的性能和效率。在以前的白 皮书[1]中,BDTI评估了Altera使用Quartus II v12.0工具链浮点设计的效率,以及 Altera 28 nm Stratix V和Arria V FPGA的 浮点性能。针对那次评估,我们采用了两 个应用实例,它们使用两类不同的矩阵分 解方法来解大规模联立线性方程:多信道 Cholesky矩阵分解以及使用Gram-Schmidt 过程的OR分解。这些分解结合了前向和后 向代换,在一组联立线性方程Ax=B中, 解出矢量x。

在本白皮书中,我们使用了以前白皮书中 同样的两个应用实例,来评估Stratix V和 Arria V FPGA的功耗和能效。正如在第4 部分所要介绍的,Altera Stratix V FPGA能 够实现6 GFLOPS/W,功耗在99 GFLOPS 时只有16 W;而Altera Arria V FPGA,可 实现7 GFLOPS/W,功耗在65 GFLOPS时 只有9 W。需要指出的是,这些并不是峰 值性能指标,而是实际浮点设计实例的性 能。

第2部分简要介绍了两个浮点应用实例的 背景。第3部分介绍了功耗测量方法。第4 部分介绍在两种不同Altera FPGA上对这 两个设计实例的评估结果:高端、中等容量Stratix V 5SGSMD5K2F40C2N器件和低功耗、中端Arria V 5AGTFD7K3F40I3N器件。最后,第5部分是BDTI的结论。

2. 浮点设计实例

线性方程组Ax = b在很多领域都有应用, 从STAP等高级军用雷达应用到数字通信 中的各种估算问题等。无论这是一个涉及 到线性最小平方的最优问题,还是MIMO 通信信道估算问题,都需要找到方程Ax = b的一组数值解。这些算法不但需要进行 大量的计算,而且,如果没有足够的动态 范围,还有可能出现数值不稳定问题。因 此,这类算法的高效精确实现,只有在浮 点器件中才具有实用性。对于大小为*m*乘*n* 的普通矩阵A,*m*是矩阵高度,*n*是宽度, QR分解可以用于解出矢量x。

这一算法将A分解成一个大小为*m*乘*n*的标 准正交矩阵Q和一个大小为*n*乘*n*的上三角 矩阵R。由于Q是标准正交的,因此,Q^TQ = I, Rx = Q^Tb。而R是上三角矩阵,后向 代换方法很容易解出x,不需要对原始矩 阵A求逆。在本白皮书的QR求解实例中, 我们应用了*m* \geq *n*的超定矩阵,使用 Gram-Schmidt过程来解出矩阵A。

当矩阵A是厄米矩阵而且正定时,例如很 多应用中使用的协方差矩阵,那么,通常 使用Cholesky分解法(其效率可达到QR分 解法的两倍)。这一算法将A分解成下三角 矩阵L及其共轭转置矩阵L*。由于L是下三 角矩阵,因此,算法使用了前向代换来解出 Ly=b中的y,然后采用后向代换解出L*x= y中的x。这样,算法间接求出矩阵A的逆矩 阵,解出x=A⁻¹b。本白皮书中的Cholesky 分解器实例有一个多信道设计,意味着能 够同时分解多个矩阵。

评估中所用到的两种分解器都使用了复

符号和定义

M 粗体大写字符表示一个矩阵。 z 粗体小写字符表示一个矢量。

L* 表示矩阵L的共轭转置矩阵。

厄米矩阵 正方矩阵,复数元素等于自己的 共轭转置。这是实数对称矩阵的复数扩展。

*正定矩阵*如果对于所有非零复数矢量z, z*Mz>0,那么厄米矩阵M是正定的。出 于本文的目的,M是厄米矩阵,因此z*Mz 总是实数。

*标准正交矩阵*如果矩阵Q^TQ=I,其中,I 是单位矩阵,那么Q是标准正交的。

*Cholesky分解*将厄米正定矩阵M因数分 解成下三角形矩阵L及其共轭转置L*, M = LL*。

QR分解将大小为m乘n的矩阵**M**分解成一个大小为m乘n的标准正交矩阵**Q**和一个大小为n乘n的标准正交矩阵**Q**和一个大小为n乘n的上三角矩阵**R**,这样,**M**=**QR**。

Fmax FPGA设计的最大频率。

数和IEEE 754单精度浮点算法来实现,在 以前的白皮书中详细介绍了这两个浮点 实例在两种Altera FPGA上的实现。

3. 功耗测量方法

此次评估使用了两个硬件平台:Stratix V 版DSP开发套件,以及Arria V FPGA开发 套件。使用这些平台时,开发人员从Altera 网站下载相应硬件平台的DSP开发套件安 装软件,以及USB-Blaster II驱动。(这一软 件还提供DVD版,可以从Altera申请获得 。)安装软件下载中还含有名为电路板测试 系统的应用程序包。这一环境提供了GUI 界面,以改变硬件开发板的功能设置,并 观察结果。电路板测试系统通过连接至电 路板USB-Blaster II单元的USB电缆进行 通信。USB-Blaster控制电路板上的JTAG 链。

图1. 一条FPGA电源线的板上功耗测量电路

通过电压稳压器对电路板上的主直流电 源输入进行降压,为电路板上元器件和 FPGA的各种电源进行供电。通过传感小 电阻,从电源平面分出FPGA电源线。所 有FPGA电源线使用了0.003 Ω传感电阻, 只有FPGA内核电源(VCCINT)使用了 0.001Ω电阻。这类电阻的精度都是1%。采 用了24位差分模数转换器(ADC)来测量传 感电阻上的电压。每一ADC通过串行外设 接口(SPI)总线与Altera MAX V CPLD通 信,后者用作板上系统控制器,实现各种 功能,例如,FPGA配置、功率和温度监 控以及风扇控制等。MAX V CPLD位于 JTAG链上,与运行在用户PC上的电路板 测试系统应用程序进行通信。除了FPGA 本身, Stratix V和Arria V电路板实际上有 相同的元器件。图1显示了开发板上一条 FPGA电源线的功耗测量电路。每一条 FPGA电源线都有自己的传感电阻。

对于这一评估,我们使用了两个应用程 序;功耗监视器和时钟控制。这两个应用 程序都是电路板测试系统环境的一部分, 它们可以通过电路板测试系统GUI运行, 也可以作为单独的应用程序来运行。在这 一评估中,我们选择在其单独模式中运行 这些应用程序。

时钟控制应用程序用于设置板上可编程 振荡器的频率。在Stratix V FPGA开发板 上,我们使用了Si570时钟源;而在Arria V FPGA开发板上,我们使用了X7时钟源。 对于Cholesky分解器配置,我们将振荡器频 率设置为Fmax/2,这是因为Cholesky分解器 使用片内PLL对其输入时钟频率进行加倍。 对于QR分解器,我们针对待评估的配置将 振荡器设置为Fmax。在第4部分的表1中, 显示了每一待测配置的Fmax。

功耗监视器应用程序与板上功耗监视电路进行通信,针对电路板上的各种电源线,测量并报告通过传感电阻的电流。对于Stratix V FPGA,我们监视通过9条电源线的电流;对于Arria V器件,我们监视通过7条电源线的电流。在每一情况下,浮点应用程序以连续工作模式运行。

对于Arria V FPGA开发套件,图2显示了功 耗监视器应用程序的控制GUI。显示的电 流RMS值是2秒周期采样中16个采样值的 平均。不能改变采样率以及平均周期。

图2. 功耗监视器GUI

但是,用户可以控制GUI的更新率以及图 形显示。显示的MAX和MIN值是完整运行 期间出现的绝对最大和最小RMS值。显示 的精度是1 mA。

对于每一浮点实例的每一配置,为能够准 确的测量电流,我们以连续模式启动应用 程序,在FPGA达到其工作温度后,才记 录电流值。显示的RMS电流值起初随着器 件温度的上升而增大,然后稳定在长期平 均值上。在某些情况下,这一过程最长需 要7分钟。我们然后监视并记录RMS电流 值,在大约两分钟的周期内进行平均。虽 然电流值在这一周期内相对稳定, 但是取 平均仍然有助于平滑掉一些小的变化。为 获得所显示的电流值的精确指标,针对几 个设计,我们独立测量了VCCINT电源线 (FPGA内核电源线)传感电阻上的电压降, 对比了计算的电流值和相应的显示值。我 们估算了功耗监视器显示的误差余量在± 1%之内。计算每一电源线的功耗时,我们 将平均后的RMS电流与电源电压相乘。我 们监视的所有电源线及其相应电压值显 示在附录的表A.1中。

4. 功耗结果

这一部分介绍了BDTI对两种不同Altera 28 nm FPGA功耗和能效的独立评估结果: 高端、中等容量Stratix V 5SGSMD5K2F40C2N器件,以及低功耗、 中端Arria V 5AGTFD7K3F40I3N器件。这 一评估中使用的Stratix V FPGA具有 345.2K自适应查找表(ALUT)、1,590个 27×27位精度可调乘法器,以及2,014个 M20K存储器模块。Arria V FPGA具有 380.4K ALUT、1,156个27×27位精度可调 乘法器,以及2,414个M10K存储器模块。 运行复数单精度IEEE 754浮点Cholesky和 QR分解器实例,测量了两种FPGA的功耗。

表1显示了以连续模式运行两个浮点实例时,Altera Stratix V和Arria V FPGA的能效,单位是GFLOPS/W (最后一列)。表1中吞吐率、Fmax和性能列是复制了[1]中介绍的BDTI对同样FPGA的性能评估结果。对于Cholesky和QR分解器设计实例,用于计算每秒实数浮点操作的方程分别是 $4n^3/3$ +12 n^2 和 8 mn^2 +6.5 n^2 +mn。

Example	Device	Configuration (Channel Size/ Matrix Size/ Vector Size)	Throughput (kMatrices/ sec)	Fmax (MHz)	Performance (GFLOPS)	Total Power ⁽¹⁾ (W)	GFLOPS/ W
		1 / 360×360 / 90	1.43	189	91	16	5.7
sky	Stratix V	20 / 60×60 / 60	118.35	234	39	15	2.6
oles		64 / 30×30 / 30	544.28	288	26	10	2.5
Ch		6 / 90×90 / 45	35.22	197	38	9.1	4.2
	Arria V	64 / 30×30 / 30	349.62	184	16	7.1	2.3
		1 / 400×400 / 100	0.315	203	162	26	6.2
	Staatin V	1 / 200×100 / 100	8.76	207	141	23	6.1
2	Stratix v	1 / 200×100 / 50	6.17	260	99	16	6.2
Ø		1 / 100×50 / 50	32.82	259	66	13	5.1
		1 / 200×100 / 50	4.05	171	65	9.1	7.1
	Arria V	1 / 100×50 / 50	21.54	170	44	8.1	5.4

表1.运行Cholesky和QR分解器的Stratix V和Arria V FPGA的功效。

(1) 功耗值的误差余量在±1%范围内。

表1中的功耗指标,是在Stratix V和Arria V FPGA上,对每个Cholesky和QR分解器配

置所测量的总功耗。每组数据中,以性能 值除以总功耗测量值,就得到表中以 GFLOPS/W表示的能效。

每一配置的总功耗包括每一FPGA所有电 源线的功耗之和。虽然在很多应用中,包 括本白皮书中所使用的实例,收发器等 FPGA的某些组成并没有被激活使用,但 是,这些组成部分却对静态功耗有贡献, 我们将其含在表1的总功耗中。在这些例 子中,FPGA内核功耗占据了总功耗的82% 至92%。

对于Stratix V和Arria V FPGA的这两个浮 点设计实例,附录中的表A.2到表A.5含有 每一电源线RMS电流测量值以及计算的 功耗。

对在本白皮书中评估的这两个浮点设计实例,我们选择了最高性能选项,即Fmax,进行编译。使用Quartus II软件v12.0工具链的设计人员有多种选择来降低其设计的功耗,包括功耗优先的编译选项、时钟电源管理,以及优化存储器时钟等。Quartus II 12.1版手册第2卷第14章讨论了与功耗相关的优化方法,可以从Altera网站[2]下载。

5. 结论

在本白皮书中,我们评估两种28 nm Altera FPGA的能效和功耗:高端、中等容量的 Stratix V,以及低功耗、中端Arria V。在 两个设计实例上评估了能效,Cholesky和 QR分解器,使用了单精度复数IEEE 754 浮点数来实现这两个实例。两个实例都使 用了Altera的Quartus II软件v12.0工具链进 行设计并实现,在我们以前的白皮书中进 行了详细介绍。

我们的评估表明, Altera Stratix V FPGA在 执行复数浮点应用程序时具有很高的计 算性能,而功耗足够低,可适用于多种低 功耗嵌入式系统。我们评估的最大的浮点 实例是在Stratix V FPGA上实现的400× 400元素QR分解器。运行在203 MHz,处 理162 GFLOPS,器件功效达到了6.2 GFLOPS/W,而功耗为26 W。对比运行同 样浮点设计配置的两种Altera FPGA,我们 发现虽然Arria V FPGA性能要低一些,功 耗也低,但是,其能效与Stratix V FPGA 相当。而且,对于相似的计算性能 (GFLOPS),我们发现,Arria V FPGA的功 耗低于Stratix V FPGA,能效要高一些。 这表明,Arria V FPGA的静态功耗和动态 功耗都要比Stratix V器件低。

最后,需要指出的是,本白皮书中介绍的 这两种Altera FPGA的性能和能效指标是 针对特定设计实例的,并不代表特殊环境 下的最佳指标。为能够与其他平台进行有 效对比,应在那些平台上实现相同的算 法,并测量其能效和功耗。

6. 参考文献

[1] Berkeley设计技术有限公司,2012年10 月,"对Altera 28-nm FPGA浮点DSP设计 流程和性能的独立分析"。可以从 http://www.altera.com/literature/wp/wp-011 66-bdti-altera-floating-point-dsp.pdf下载。

[2] "Quartus II手册12.1,第2卷",可以从Altera网站的
http://www.altera.com/literature/hb/qts/qts_
qii5v2.pdf下载。

附录

电流测量值的误差余量在±1%范围内。

Stratix V FPGA					
Power Rails	Voltage (V)	Function			
VCCINT	0.90	FPGA core			
XCVR_GXB	1.0	High-speed transceiver			
VCCIO_HSMB	1.2	VCC I/O			
VCCPD/PGM	2.5	I/O pre-driver, programming			
VCC_1.5	1.5	PLL, transceiver buffers			
VCCIO_1.8	1.8	1.8 V I/O			
VCCIO_2.5	2.5	2.5 V I/O			
VCCIO_1.5	1.5	1.5 V I/O			
VCCA_GXB	3.0	XCVR analog power			

表A.1.监视的电源及其电压

Arria V FPGA					
Power Rails	Voltage (V)	Function			
VCCINT/VCCP	1.1	FPGA core			
VCCD_PLL	1.5	Digital portion of PLL			
VCCIO_1.5V	1.5	1.5 V I/O			
VCCIO_1.8V	1.8	1.8 V I/O			
VCCA	2.5	Analog power for PLL			
VCCPD/PGM	2.5	I/O pre-driver, programming			
XCVR_GXB	1.2	High-speed transceiver			

表A.2.在Stratix V FPGA上的Cholesky分解器的功耗

Number of channels = 1 Matrix size = 360 x 360 Dot product vector size = 90 F _{max} = 189 MHz				
Power Rail	Msr'd Current (mA)	Power (W)		
VCCINT	15530	14		
XCVR_GXB	300	0.30		
VCCIO_HSMB	2	0.002		
VCCPD/PGM	90	0.23		
VCC_1.5	496	0.74		
VCCIO_1.8	0	0		
VCCIO_2.5	0	0		
VCCIO_1.5	0	0		
VCCA_GXB	238	0.71		
Total Power				
Consumption	16			
% Consumed				
by Core	88	%		
GFLOPS/W	5.	7		

Number of channels = 20 Matrix size = $60 \ge 60$ Dot product vector size = 60 $F_{max} = 234$ MHz				
Power Rail	Msr'd Current (mA)	Power (W)		
VCCINT	14474	13		
XCVR_GXB	299	0.30		
VCCIO_HSMB	2	0.002		
VCCPD/PGM	90	0.23		
VCC_1.5	488	0.73		
VCCIO_1.8	0	0		
VCCIO_2.5	0	0		
VCCIO_1.5	0	0		
VCCA_GXB	238	0.71		
Total Power Consumption	15			
% Consumed by Core	879	%		
GFLOPS/W	2.6			

Number of channels = 64 Matrix size = 30×30 Dot product vector size = 30 $F_{max} = 288$ MHz				
Power Rail	Msr'd Current (mA)	Power (W)		
VCCINT	9368	8.4		
XCVR_GXB	271	0.27		
VCCIO_HSMB	2	0.002		
VCCPD/PGM	91	0.23		
VCC_1.5	455	0.68		
VCCIO_1.8	0	0		
VCCIO_2.5	0	0		
VCCIO_1.5	0	0		
VCCA_GXB	238	0.71		
Total Power Consumption	10)		
% Consumed by Core	829	%		
GFLOPS/W	2	5		

Number of channels = 6 Matrix size = $90 \ge 90$ Dot product vector size = 45 $F_{max} = 197$ MHz				
Power Rail	Measured Current (mA)	Power (W)		
VCCINT/VCCP	7341	8.1		
VCCD_PLL	6	0.009		
VCCIO_1.5 V	17	0.026		
VCCIO_1.8 V	17	0.031		
VCCA	336	0.84		
VCCPD/PGM	13	0.033		
XCVR_GXB	29	0.035		
Total Power Consumption	9.	.1		
% Consumed by Core	89	%		
GFLOPS/W	4.	.2		

表A.3.在Arria V FPGA上的Cholesky分解器的功耗

Number of channels = 64Matrix size = 30×30

Dot product vector size = 30 $F_{max} = 184$ MHz				
Power Rail	Measured Current (mA)	Power (W)		
VCCINT/VCCP	5531	6.1		
VCCD_PLL	6	0.009		
VCCIO_1.5 V	17	0.026		
VCCIO_1.8 V	15	0.027		
VCCA	336	0.84		
VCCPD/PGM	15	0.038		
XCVR_GXB	25	0.030		
Total Power Consumption	7.	1		
% Consumed by Core	86	%		
GFLOPS/W	2.	3		

表A.4a.在Stratix V FPGA上的QR分解器的功耗

Number of channels = 1 Matrix size = 400×400 Dot product vector size = 100 $F_{max} = 203$ MHz				
Power Rail	Measured Current (mA)	Power (W)		
VCCINT	26258	24		
XCVR_GXB	359	0.36		
VCCIO_HSMB	3	0.004		
VCCPD/PGM	86	0.22		
VCC_1.5	596	0.89		
VCCIO_1.8	0	0		
VCCIO_2.5	2	0.005		
VCCIO_1.5	0	0		
VCCA_GXB	240	0.72		
Total Power Consumption	26			
% Consumed by Core	92%			
GFLOPS/W	6	.2		

Number of channels = 1 Matrix size = 200×100 Dot product vector size = 100 $F_{max} = 207$ MHz				
Power Rail	Measured Current (mA)	Power (W)		
VCCINT	22882	21		
XCVR_GXB	337	0.33		
VCCIO_HSMB	3	0.004		
VCCPD/PGM	86	0.22		
VCC_1.5	560	0.84		
VCCIO_1.8	0	0		
VCCIO_2.5	2	0.005		
VCCIO_1.5	0	0		
VCCA_GXB	240	0.72		
Total Power Consumption	2	3		
% Consumed by Core	91%			
GFLOPS/W	6.1			

Number of channels = 1 Matrix size = 200×100 Dot product vector size = 50 $F_{max} = 260 \text{ MHz}$				
Power Rail	Measured Current (mA)	Power (W)		
VCCINT	15470	14		
XCVR_GXB	300	0.30		
VCCIO_HSMB	3	0.004		
VCCPD/PGM	86	0.22		
VCC_1.5	490	0.74		
VCCIO_1.8	0	0		
VCCIO_2.5	2	0.005		
VCCIO_1.5	0	0		
VCCA_GXB	238	0.71		
Total Power Consumption 16				
% Consumed by Core	88	9%		
GFLOPS/W	6	.2		

表A.4b.在Stratix V FPGA上的QR分解器的功耗

Number of channels = 1 Matrix size = 100 x 50 Dot product vector size = 50 F _{max} = 259 MHz				
Power Rail	Measured Current (mA)	Power (W)		
VCCINT	12131	11		
XCVR_GXB	295	0.30		
VCCIO_HSMB	3	0.004		
VCCPD/PGM	86	0.22		
VCC_1.5	481	0.72		
VCCIO_1.8	0	0		
VCCIO_2.5	2	0.005		
VCCIO_1.5	0	0		
VCCA_GXB	239	0.72		
Total Power Consumption	13			
% Consumed by Core	85%			
GFLOPS/W	5.1			

表A.5.在Arria V FPGA上的QR分解器的功耗

Number of channels = 1				
Matrix size = 200 x 100 Dot product vector size = 50				
Power Rail	Measured Current (mA)	Power (W)		
VCCINT/VCCP	7467	8.2		
VCCD_PLL	5	0.008		
VCCIO_1.5 V	15	0.023		
VCCIO_1.8 V	15	0.027		
VCCA	307	0.77		
VCCPD/PGM	14	0.035		
XCVR_GXB	23	0.028		
Total Power Consumption	9.1			
% Consumed by Core	90%			
GFLOPS/W	7.1			

Number of channels = 1 Matrix size = 100 x 50 Dot product vector size = 50 F _{max} = 170 MHz			
Power Rail	Measured Current (mA)	Power (W)	
VCCINT/VCCP	6443	7.1	
VCCD_PLL	3	0.005	
VCCIO_1.5 V	14	0.021	
VCCIO_1.8 V	10	0.018	
VCCA	344	0.86	
VCCPD/PGM	14	0.035	
XCVR_GXB	22	0.026	
Total Power Consumption	8.1		
% Consumed by Core	88%		
GFLOPS/W	5.4		