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OVERVIEW 

FPGAs are increasingly used as parallel processing engines for 
demanding digital signal processing applications. Benchmark results show that on 
highly parallelizable workloads, FPGAs can achieve higher performance and 
superior cost/performance compared to digital signal processors (DSPs) and 
general-purpose CPUs. However, to date, FPGAs have been used almost 
exclusively for fixed-point DSP designs. FPGAs have not been viewed as an 
effective platform for applications requiring high-performance floating-point 
computations. FPGA floating-point efficiency and performance has been limited 
due to long processing latencies and routing congestion. In addition, the 
traditional FPGA design flow, based on writing register-transfer-level hardware 
descriptions in Verilog or VHDL, is not well suited to implementing complex 
floating-point algorithms. 

Altera has developed a new floating-point design flow intended to 
streamline the process of implementing floating-point digital signal processing 
algorithms on Altera FPGAs, and to enable those designs to achieve higher 
performance and efficiency than previously possible. Rather than building a 
datapath consisting of elementary floating-point operators (for example, 
multiplication followed by addition followed by squaring), the floating-point 
compiler generates a fused datapath that combines elementary operators into a 
single function or datapath. In doing so, it eliminates the redundancies present in 
traditional floating-point FPGA designs. In addition, the Altera design flow is a 
high-level, model-based design flow using Altera’s DSP Builder Advanced 
Blockset with MATLAB and Simulink from MathWorks. Altera expects  that by 
working at a high level, FPGA designers will be able to implement and verify 
complex floating-point algorithms more quickly than would be possible with 
traditional HDL-based design. 

BDTI performed an independent analysis of Altera’s floating-point DSP 
design flow. BDTI’s objective was to assess the performance that can be obtained 
on Altera FPGAs for demanding floating-point DSP applications, and to evaluate 
the ease-of-use of Altera’s floating-point DSP design flow. This paper presents 
BDTI’s findings, along with background and methodology details. 
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1. Introduction 

Two Floating-point Design Examples 
Advances in digital chips are enabling complex 

algorithms that were previously limited to research 
environments to move into the realm of everyday 
embedded computing applications. For example, 
for many years, linear algebra (and specifically 
solving for systems involving large sets of 
simultaneous linear equations) has been used 
mainly in research environments, where large-scale 
compute resources are available and real-time 
computation is usually not required. Solving for 
large systems involves either matrix inversion or 
some kind of matrix decomposition. In addition 
to being computationally demanding, these 
techniques can suffer from numeric instability if 
sufficient dynamic range is not used. Therefore, 
efficient and accurate implementation of such 
algorithms is only practical in floating-point 
devices. 

Altera recently introduced floating-point 
capability in the DSP Builder Advanced Blockset 
tool chain to simplify implementation of floating-
point DSP algorithms on Altera FPGAs, while 
improving performance and efficiency of floating-
point designs compared to traditional FPGA 
design techniques. In a previous white paper [1], 
BDTI analyzed and evaluated the performance 
and efficiency of the Altera Quartus II software 
v11.0  tool chain on a single-channel floating-
point Cholesky solver implementation example, 
synthesized for the 40-nm Stratix IV and Arria IV 
FPGAs. 

In this paper, we evaluate the effectiveness of 
Altera’s approach using the newer Quartus II 
software v12.0 tool chain and assess the 
performance of Altera’s 28-nm Stratix V and Arria 
V FPGAs. For this evaluation, BDTI focused on 
solving a large set of simultaneous linear equations 
using two types of decompositions: a multi-
channel Cholesky matrix decomposition and the 
QR decomposition using the Gram-Schmidt 
process. These decompositions combined with 
forward and backward substitutions constitute a 

solution for the vector x in a simultaneous set of 
linear equations of the form Ax = B. 

Matrix decomposition is used in many 
advanced military radar applications such as 
Space-Time Adaptive Processing (or STAP) and 
various estimation problems in digital 
communications. The QR decomposition is 
commonly used for any general m-by-n matrix A, 
while the Cholesky decomposition is the preferred 
algorithm for a square, symmetric, and positive 
definite matrix for its high computational 
efficiency. Both decompositions use very 
computationally demanding algorithms and 
require high data precision, making floating-point 
math a necessity. In addition, the two examples 
studied in this paper use vector dot products and 
nested loops at the core of their algorithm, and 
these operations are found in a wide range of 
digital signal processing applications involving 
linear algebra and finite impulse response (FIR) 
filters. 

In the examples described in this paper, 
simultaneous sets of complex-data linear 
equations are solved in both methods and the 
results are reported. Using the QR solver as 
shown in Section 4, an Altera Stratix V FPGA is 
capable of performing 315 matrix decompositions 

NOTATION AND DEFINITIONS 

M Bold capital letter denotes a matrix. 

z Bold small letter denotes a vector. 

L
*
 The conjugate transpose of matrix L. 

l
*
 The conjugate transpose of element l. 

Hermitian Matrix A square matrix with complex 

entries that is equal to its own conjugate transpose. 

This is the complex extension to a real symmetric 

matrix. 

Positive Definite Matrix A Hermitian matrix M is 

positive definite if z*Mz > 0 for all non-zero complex 

vectors z. The quantity z*Mz is always real because M 

is a Hermitian matrix for the purposes of this paper. 

Orthonormal Matrix A matrix Q is orthonormal if 

QTQ = I where I is the identity matrix. 

Cholesky Decomposition A factorization of a 

Hermitian positive definite matrix M into a lower 

triangular matrix L and its conjugate transpose L* such 

that M = LL*. 

QR Decomposition A factorization of a matrix M of 

size m-by-n into an orthonormal matrix Q of size m-by-

n and an upper triangular matrix R of size n-by-n such 

that M = QR. 

Fmax The maximum frequency of an FPGA design. 
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per second of size 400×400, running at 203 MHz 
and achieving 162×109 floating-point operations 
per second (GFLOPS).  

Both design examples evaluated in this paper 
are provided as part of the DSP Builder software 
v12.0 tool chain, or they may be requested from 
floatingpoint@altera.com. 

Floating-point Design Flow 
Traditionally, FPGAs have not been the 

platform of choice for demanding floating-point 
applications. Although FPGA vendors have 
offered floating-point primitive libraries, the 
performance of FPGAs in floating-point 
applications has been very limited. The 
inefficiency of traditional floating-point FPGA 
designs is partially due to the deeply pipelined 
nature and wide arithmetic structures of the 
floating-point operators, which create large 
datapath latencies and routing congestion. In turn, 
the latencies create hard-to-manage problems in 
designs with high data dependencies. The final 
result is often a design with a low operating 
frequency. 

The Altera DSP Builder Advanced Blockset 
tool flow attacks these issues at both the 
architectural level and the system design level. The 

Altera floating-point compiler fuses large portions 
of the datapath into a single floating-point 
function instead of building them up by 
composition of elemental floating-point operators. 
It does this by analyzing the bit growth in the 
datapath and choosing the optimum input 
normalization to allocate enough precision 
through the datapath in order to eliminate as 
many normalization and denormalization steps as 
possible, as shown in Figure 1. The IEEE 754 
format is only used at datapath boundaries; within 
datapaths, larger mantissa widths are used to 
increase the dynamic range and reduce the need 
for denormalization and normalization steps 
between successive operators. Normalization and 
denormalization functions use barrel shifters of up 
to 48 bits wide for a single precision floating-point 
number. This consumes a significant amount of 
logic and routing resources and is the main reason 
why floating-point implementations on FPGAs 
have not been efficient. The fused datapath 
methodology eliminates a significant number of 
these barrel shifters. Multiplications involving the 
larger precision mantissas use Altera’s 27-bit×27-
bit multiplier mode in Stratix V and Arria V 
devices. Figure 1(b) shows the fused datapath 
methodology for the simple case of a two-adder 
chain as compared to the traditional 
implementation shown in Figure 1(a). The fused 
datapath in Figure 1(b) eliminates the inter-
operator redundancy by removing the 
denormalization of the output of the first adder 
and the normalization of the input of the second 
adder. The elimination of the extra logic and 
routing, and the use of hard multipliers make 
timing and latency across complex datapaths 
predictable. Both single- and double- precision 
IEEE 754 floating-point algorithms are 
implemented with reduced logic and higher 
performance. Altera claims that a fused datapath 
contains 50% less logic and 50% less latency than 
the equivalent datapath constructed out of 
elementary operators [2]. And, as a result of the 
wider internal data representation, typically the 
overall data accuracy is higher than that achieved 
using a library with elementary IEEE 754 floating-
point operators. 

The Altera floating-point DSP design flow 
incorporates the Altera DSP Builder Advanced 
Blockset, Altera’s Quartus II software tool chain, 
the ModelSim simulator, as well as MATLAB and 
Simulink from MathWorks. The Simulink 
environment allows the designer to operate at the 

Figure 1 (a) Traditional floating-point 

implementation (b) Fused datapath 
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algorithmic behavioral level to describe, debug, 
and verify complex systems. Simulink features 
such as data type propagation and vector data 
processing are incorporated into the DSP Builder 
Advanced Blockset, enabling a designer to 
perform quick algorithmic design space 
exploration. 

In order to evaluate the efficiency and 
performance of Altera’s floating-point design 
flow, BDTI used the DSP Builder Advanced 
Blockset tool flow to validate two examples, both 
solving a set of simultaneous linear equations 
using complex data-type in single-precision 
floating-point representation. One solution is 
achieved using the Cholesky decomposition, while 
the other uses QR decomposition via the Gram-
Schmidt process. Section 2 of the paper describes 
the implementation of the two floating-point 
examples. Section 3 presents BDTI’s experience 
with the design flow and tool chain. Section 4 
presents the performance of the implementation 
on two different Altera FPGAs: the high-end 
medium-size Stratix V 5SGSMD5K2F40C2N 
device and the mid-range Arria V 
5AGTFD7K3F40I3N device. Finally, Section 5 
presents BDTI’s conclusions. 

2. Implementation 

Background 
Sets of linear equations of the form Ax = b 

arise in many applications. Whether it is an 
optimization problem involving linear least 
squares, a Kalman filter for a prediction problem, 
or MIMO communications channel estimation, 
the problem remains one of finding a numerical 
solution for a set of linear equations of the form 
Ax = b. For a general matrix of size m-by-n, where 
m is the height of the matrix and n its width, QR 
decomposition may be used to solve for vector x. 
The algorithm decomposes A into an orthonormal 
matrix Q of size m-by-n and an upper triangular 
matrix R of size n-by-n. Since Q is orthonormal, 
QTQ = I and Rx = QTb. Given that R is an upper 
triangular matrix, x can easily be solved by 
backward substitution without even inverting the 
original matrix A. In the QR example in this paper 
we work with over-determined matrices with m ≥n. 

When matrix A is symmetric and positive 
definite, such as covariance matrices that arise in 
many problems, the Cholesky decomposition and 
solver are commonly used. The algorithm finds 
the inverse of matrix A thus solving for vector x 

in x				=	���b. The Cholesky decomposition is at 
least twice as efficient as QR decomposition 
depending on the algorithms used for the 
decomposition. Since these decomposition 
algorithms are recursive in nature and involve 
division, a large numeric dynamic range becomes a 
necessity as the matrix size increases. Most 
implementations, even for matrix sizes as small as 
4×4 in MIMO channel estimation, for example, 
are performed using floating-point operations. For 
larger systems requiring high throughput, such as 
the ones found in military applications, the 
required floating-point operation rate has typically 
been prohibitive for embedded systems. 
Frequently, designers either abandon the whole 
algorithm for a sub-optimum solution or resort to 
using multiple high-performance floating-point 
processors, raising cost and design effort.  

Architectural Overview 
Cholesky Solver 
In our design example, the Cholesky solver is 

implemented in the FPGA as two subsystems 
operating in parallel in a pipelined fashion. The 
first subsystem executes the Cholesky 
decomposition and forward substitution—steps 1 
and 2 in the sidebar titled The Cholesky Solver. The 
second subsystem executes the backward 
substitution—step 3 in the same sidebar. Since the 
input matrix is Hermitian and the decomposition 
generates complex conjugate transposed triangular 
matrices, memory utilization is optimized by 
loading only the lower triangular half of the input 
matrix A and overwriting it as the lower triangular 
matrix L is generated. Both subsystems are 
pipelined, utilizing an input stage and a processing 
stage to allow processing to occur in one area of a 
memory while the other half is used for loading 
new data. The output of the decomposition and 
forward substitution stage goes into the input 
stage of the backward substitution, as shown in 
Figure 2.  

The core of the decomposition is the complex 
vector dot product engine (also referred to as the 
vector multiplier) which computes equations (3) 
and (4). For the Stratix V device, a vector size 
(VS) of up to 90 complex-data elements is used, 
whereas for the Arria V device, a vector size of up 
to 45 complex-data elements is implemented. The 
vector size also corresponds to the number of 
parallel memory reads needed to supply the dot 
product engine with a new set of data every clock 
cycle and thus determines the width and 
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partitioning of the on-chip dual-port memory. For 
implementation reasons, the storage of a matrix of 

a given size is partitioned into ceil (N/VS) memory 
banks, where ceil() is the ceiling function and N is 
the size of the matrix. 

The Cholesky solver design is a multi-channel 
implementation. The maximum number of 
channels is a compile-time parameter and is 
limited only by the available memory on the 
device. The memory partitioning is identical to a 
single-channel implementation except that 
multiple copies of the same structure are used.  

 The decomposition is performed one element 
at a time, column-wise, starting from the top left 
corner, proceeding in a vertical zigzag fashion, and 
ending at the bottom right corner of the matrix as 
shown in Figure 3(a). The diagonal element of 
each column is calculated first, followed by all the 
non-diagonal elements below it in the same 
column before moving to the diagonal element at 
the top of the next column to the right. The 
schedule of events and iterations is controlled with 
a four-level nested for loop. The outermost loop 
implements column-wise processing; the second 
loop implements bank-wise processing; the third 
inner loop processes the rows; and the innermost 
loop processes the multiple channels. Placing the 
channel processing as the innermost loop 
effectively turns the floating-point accumulator 
into a time-shared accumulator and hides its 
latency better. The NestedLoops block in the DSP 
Builder Advanced Blockset integrates up to three 
nested loops in a single processing block, making 
the implementation faster and more resource 
efficient when compared to a similar function that 
is implemented as three separate for-loop blocks. 
The block abstracts away the intricate loop control 
signals, reduces design and debug times, and 
makes the overall loop structure more readable. 

The dot product engine operates on the rows 
of the matrix and calculates up to vector size 
multiplications in the summation term of 
equations (3), (4), and (6) simultaneously in one 
cycle. A circular memory structure is used at the 
input of the dot product engine to cycle over the 
rows of the multiple input matrices. For vector 
dot products shorter than vector size, unused 
terms are masked out and are not included in the 
summation. For dot products longer than vector 
size, partial sums of products are calculated and 
saved at bank boundaries until the output of all 
banks for a given element in that row are available 
for a final summation, as shown in Figure 3(b). 
The summation of the bank outputs is performed 
in a single accumulator loop using the floating-

THE CHOLESKY SOLVER 

The recursive Cholesky algorithm used to solve for vector 

x in Ax = b has three steps: 

Step 1. Decomposition, i.e. finding the lower triangular 

matrix L, where A = LL* 

��� � √��� (1) 

for i = 2 to n, 

�	� � �	� ���
  (2) 

for j = 2 to (i-1), 

�	� 	� ��	� 	∑ �	����
��� � ���∗� ���
  (3) 

end 

�		 � 	��		 	∑ ��	�	����� � �	�∗� (4) 

end 

Note the dependencies in the equations above. The 

diagonal elements in eq. (4) depend only on elements to 

their left in the same row. Non-diagonal elements depend 

on elements to their left in the same row, and on the 

elements to the left of the corresponding diagonal element 

above them. 

Step 2. Forward substitution, i.e. solving for y in the 

equation Ly = b, 

�� � 	�� ���⁄  (5) 

for i = 2 to n, 

�	 � ��	  ∑ ��	����� � �	�� �		⁄  (6) 

end 

Step 3. Backward substitution, i.e. solving for x in the 

equation L* x = y, 

�� � �� ���∗⁄  (7) 

for i = n-1 to 1, 

�	 � ��	  ∑ �����	�� � �	�∗ �/�		∗  (8) 

end 

where, 

n = the dimension of matrix A 

lij = element at row i column j of matrix L 

aij = element at row i column j of matrix A 

yi = element at row i of vector y 

bi = element at row i of vector b 

xi = element at row i of vector x 

The output of step 1 is the Cholesky decomposition, and 

the output of step 3 is the solution x of the linear equation 

Ax = b. Note that the algorithm indirectly finds the inverse 

of matrix A to solve for x = A-1 b. 
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point adder block from the DSP Builder 
Advanced Blockset. This feedback loop has a 

latency of 13 cycles. By swapping the for Banks 
loop and the for Rows loop relative to the order 
that one would traditionally have in a software 
implementation, and adding multi-channel 
processing, the floating-point accumulator latency 
is hidden and hardware utilization is improved. 
The DSP Builder Advanced Blockset 
automatically calculates loop delays to address this 
type of latency. The tool can be instructed to 
calculate and fill in the minimum delay by 
checking the Minimum delay box in the Loop Delay 
block. Paths that incur identical delays may be 
assigned an equilvalence group number and the 
tool will then assign the same delay value to all 
members in the group. Although not used in the 
examples evaluated in this paper, the DSP Builder 
Advanced Blockset provides an Application 
Specific Floating-Point Accumulator where the 
user can customize the accumulator to optimize 
its speed and resource requirements by 
configuring parameters such as maximum input 
size and required accumulation accuracy. This 
block allows for single-cycle-per-sample 
accumulation of a single stream of floating-point 
numbers at a high clock rate. 

The second subsystem performs backward 
substitution. This subsystem has its own input and 
output memory blocks. Like the Cholesky forward 
substitution subsystem, it is pipelined into an 
input stage and a processing stage. Since the 
complexity of the backward substitution is on the 
order of N2 compared to N3 for the 
decomposition, vector processing is not employed 
for the dot product. Instead, a single complex 
multiplier is used for the dot product which is 
enough to keep pace with the Cholesky 
decomposition and the forward substitution 
subsystem.  

QR Solver  
The QR decomposition and solver is 

implemented as two subsystems operating in 
parallel in a pipelined fashion as shown in Figure 
4. The first subsystem executes steps 1 and 2 in 
the sidebar titled The QR Solver, whereas the 
second subsystem executes the backward 
substitution in step 3. The backward substitution 
subsystem is identical to the one used in the 
Cholesky solver. In contrast to Cholesky where 
equations (1) to (6) are implemented as a single 
four-deep nested loop, the QR solver employs a 
simple finite state machine (FSM) to cycle through 
four main operations; finding the magnitude 
square of a vector in equation (2), the dot product 

THE QR SOLVER 

Solving for x in Ax = b via QR decomposition using the 

Gram-Schmidt process has three steps: 

Step 1. Decomposition of matrix A of size m-by-n, i.e. 

finding the matrices Q of size m-by-n, and R of size n-by-

n, where A = QR. 

�� � �� (1) 

for k = 1 to n, 

�_ !�� � ∑ "��∗#��� � "��  (2) 

��� � $�_ !��      (3) 

for i = (k+1) to n, and k % n, 

��	 � �
&'' ∑ "��∗#��� � ��	 (4) 

end 

t = k + 1, and k % n,      (5) 

for i = 1 to m, and k < n, 

"	( � �	(  ∑ ��(���� � "	� �_ !��
              (6) 

end 

end 

Note that the orthonormal matrix Q = [q1 q2 …qn], is not 

explicitly calculated but rather its orthogonal form, U = [u1 

u2 … un], is found and used in this restructured set of 

equations, where qi = 
�	 ‖�	‖
 . 

Step 2. Calculating d, where d = QTb. 

for k = 1 to n, 

*� � ∑ "��∗#��� � �� ���⁄  (7) 

end 

Step 3. Backward substitution, i.e. solving for x in the 

equation Rx = d. 

for i = n-1 to 1, 

�	 � �*	  ∑ �	�∗���	�� � ���/�		∗ (8) 

end 

where, 

m = the row dimension of matrix A 

n = the column dimension of matrix A 

ui = ith column of matrix U 

uij = element at row i column j of matrix U 

rij = element at row i column j of matrix R 

ai = ith column of matrix A 

aij = element at row i column j of matrix A 

di = element at row i of vector d 

bi = element at row i of vector b 

xi = element at row i of vector x 

The QR solver finds the solution x of the linear equations 

Ax = b without finding the inverse of matrix A which may 

be undefined. 
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of two vectors in equation (4), subtracting a dot 
product from a vector in equation (6), and the dot 
product in equation (7) to find vector d. The 
NestedLoop block in the DSP Builder Advanced 
Blockset is used in all phases of the FSM to 
generate all control and event signals for the 
datapath. 

The common processing block in the four 
operations listed above is the dot product engine. 
In order to increase performance, vector 
processing is used to calculate the dot product. 
Similar to the Cholesky design, the vector size is a 
compile-time parameter. To reuse this engine in all 
four states of the FSM, a data multiplexer is used 
at its input and controlled by the FSM event 
controller. The multiplexer selects the correct 
inputs for the dot product engine for each state of 
the FSM. The details of the dot product engine 
and the floating-point accumulator are similar to 
those in the Cholesky design and hence are not 
presented here.  

The memory needed for the QR 
decomposition is optimized by reusing the main 
core memory block that initially holds matrix A 
and input vector b. Processing happens column-
wise, left to right, in the core memory. Once a 
column is consumed and no longer needed, it is 
overwritten by the corresponding column of a 
new matrix. By the time the old matrix A is 
decomposed, the original contents of this memory 
block are replaced by the new matrix, thus 
maintaining the capability of back-to-back matrix 
processing without any stalls.  

In the first two states of the FSM, elements of 
the R matrix are generated element-by-element 
row-wise starting with the diagonal element for 
each row. In the subtraction state of the FSM, the 
columns of matrix A in the core memory are 
recursively updated and replaced by the partially 

calculated  vectors. For example, at column k, 
all columns k+1 to n are updated in memory by 

subtracting the scaled version of  from each of 
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the columns k+1 to n. This process recursively 

calculates the vectors +��� to +� and is a more 
efficient version of equation (6) for hardware 
implementation. Processing column-wise, in the 
fourth state of the FSM, each newly calculated 

+� 	is multiplied with input vector b to generate a 
single element *� of column vector d. The Q 
matrix is not explicitly generated, but its 

orthogonal columns,	+�, are generated, used in 
subsequent phases of the FSM, and overwritten by 

the corresponding column, ,�, of the new matrix 
in the next cycle of the FSM. Figure 5 shows the 
memory organization and processing sequence of 
the QR decomposition subsystem.  

The outputs of the first subsystem are the R 
matrix and the column vector d. The R matrix is 
an upper triangular matrix and is generated row-
wise left to right as shown in equations (3) and (4). 
A rectangular memory structure is used in a ping-
pong manner. While the upper triangular section 
is being processed by the backward substitution 
subsystem, the lower triangular section is getting 
filled by the decomposition subsystem, and vice 

versa. The d column vector is appended to the R 
matrix and is generated row-wise top to bottom. 
The output of the backward substitution, is the 
solution vector x of the linear equations Ax = b.  

The QR solver may be implemented in a multi-
channel format similar to the Cholesky solver to 
improve utilization, reduce latency, and increase 
the throughput of the design. The throughput 
improvement would mainly come from the 
effective reduction in the latency of the floating-
point accumulator.  

3. Design Flow and Tool Chain  

Evaluation Methodology 
For this evaluation, Altera provided BDTI 

with implementations of the Cholesky and the QR 
solvers created using the DSP Builder Advanced 
Blockset. Altera provided BDTI engineers a PC 
with the necessary Altera and MathWorks tools 
installed. BDTI engineers then examined the 
Altera designs, simulated and synthesized them, all 
under the Simulink environment. Additionally, the 

Figure 4 QR process pipelining and memory reuse 
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Figure 5 Memory organization of the QR decomposition subsystem 
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synthesized designs were run on two separate 
devices: the Stratix V and Arria V FPGAs. In the 
process, BDTI evaluated the Altera design flow 
and the performance of the two design examples. 

Since the boards used for this evaluation 
lacked the ability to generate the stimuli for the 
example designs, each of the two designs contains 
a stimulus generation block that is implemented 
using DSP Builder Advanced Blockset blocks and 
compiled with the application design under test 
(DUT). In order to minimize the impact of the 
stimulus block on DUT performance and FPGA 
resource usage, matrix A is generated on-the-fly by 
the stimulus block from a much smaller set of 
random data. This small set of data is generated by 
MATLAB m-file scripts, loaded into the stimulus 
block memory and compiled with the design. 
These MATLAB scripts use the same algorithm as 
the stimulus block in the DUT to generate the 
double-precision floating-point format reference 
data for the solution vector x to measure the error 
performance of the Simulink models and the 
designs running on the FPGAs. In the Cholesky 
design this algorithm guarantees Hermitian 
positive definiteness for matrix A, whereas in the 
QR solver design it guarantees the creation of a 
well-conditioned A matrix. 

Four configurations of vector, matrix, and 
channel sizes were implemented for the Cholesky 
solver design, three configurations on the Stratix 
V FPGA and two configurations on the Arria V 
device, with one common configuration between 
the two. For the QR solver design, four 
configurations were implemented for the Stratix V 
FPGA, and two of these were also implemented 
on the Arria V device. All configurations were 
evaluated for FPGA resource utilization, 
achievable clock rate, throughput, and functional 
correctness. FPGA design constraints, such as 
clock rate, device selection, and speed grade are 
specified in the Simulink environment. 

Throughput and performance were evaluated 
at the Simulink model and the hardware platform 
levels. The Simulink model of both designs is 
instrumented to display both the forward 
processing and the total of forward and backward 
processing cycles, and the Quartus II software 
runs give the Fmax achieved for each configuration. 
Each configuration is then downloaded to the 
hardware platform, its operating frequency set to 
Fmax, and processing is started. The solution 
vectors x of each solver are captured for each 
configuration and compared against the 

corresponding MATLAB generated double-
precision floating-point references. 

A post-simulation script calculates the 
difference between the Simulink IEEE 754 single-
precision floating-point output and the MATLAB 
generated double-precision floating-point 
reference vectors. Similarly, a script calculates the 
difference between the captured output of the 
hardware simulations and that of the MATLAB 
generated double-precision floating-point 
references. 

Evaluation of the Tool Chain 
Simulink is built upon and requires the 

MATLAB framework. In the Simulink 
environment, the evaluated designs use blocks 
from the Altera DSP Builder Advanced Blockset, 
which is a separate blockset from the standard 
DSP Builder library. The DSP Builder Advanced 
Blockset is geared towards block-based 
implementation of DSP algorithms and datapaths 
and uses a higher level of abstraction than the 
standard DSP Builder library, which comprises 
more general and elementary blocks. The DSP 
Builder Advanced Blockset library contains over 
50 common trigonometric, arithmetic, and 
Boolean functions in addition to the more 
complex fast Fourier transform (FFT) and FIR 
filter building blocks. Notable additions in 
Quartus II software v12.0 are the low-latency 
square root, the nested for loop, and a 
customizable floating-point accumulator blocks. 
Elements from the standard Blockset and the DSP 
Builder Advanced Blockset cannot be mixed in a 
datapath structure at the same hierarchy level; only 
blocks from the DSP Builder Advanced Blockset 
support the floating-point compiler. Blocks from 
the standard Blockset are not optimized for 
floating-point processing. In addition, although 
importing of hand-coded HDL is available for the 
standard Blockset, it is not available in the DSP 
Builder Advanced Blockset since the tool cannot 
perform optimizations at the HDL level. In 
general, the block-based design-entry approach is 
well suited for DSP algorithms; however, due to 
the lack of constructs such as case or switch in the 
block library, a text-based approach is more 
intuitive for designs that are control-intensive and 
involve state machines. 

Starting a simulation with DSP Builder 
Advanced Blockset compiles the Simulink model, 
generates HDL code and constraints for the 
Altera Quartus II software environment, builds a 
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test bench and script files for the ModelSim 
environment, and simulates the Simulink model. 
The time required to run the simulations for 
various configurations ranged from 3 minutes to 
28 minutes depending on matrix size on a 3 GHz 
Intel Xeon W3550 PC. The Simulink simulation 
generates detailed resource utilization estimates 
without the need to run a Quartus II software 
compilation, thus helping the designer to quickly 
determine the device size needed. When using a 
hardware development kit, the user must supply 
pin-out assignments based on the board layout; 
the user can re-use the pin-out constraints in the 
provided .qsf file in the Quartus II software 
project folder for the design, or use the pin 
planner in Quartus II software to assign and 
manage pin-outs from scratch. 

Experiments were performed on the model to 
evaluate the ease of algorithm exploration and the 
corresponding HDL generation. Input parameters, 
such as vector dot product size, matrix size, and 
data type were changed in the stimulus block and 
simulations run. In all cases, the correct RTL code 
was generated within minutes and simulation 
outputs matched the MATLAB reference. 

All configurations were synthesized using the 
Quartus II design software, which may be 
launched directly from the Simulink environment. 
A designer may use the Quartus II software in 
push-button mode with either default or user-
selected optimization parameters, or use the 
Design Space Explorer (DSE) tool. Available as 
part of the Quartus II software, DSE 
automatically runs multiple router passes using a 
different seed for each pass. The route with the 
best clock rate is saved. This is an automatic 
process requiring no user intervention but takes 
much longer than the push-button method. The 
Quartus II software push-button runs ranged 
from 1 hour to 6.5 hours depending on the design 
size.  

The higher abstraction level employed by the 
DSP Builder Advanced Blockset design flow 
allows for a faster algorithmic space exploration 
and simulation cycles, thus reducing the overall 
time to reach a final optimized design. However, 
this advantage is not inherent to Simulink in the 
same way in which, for example, data-type 
propagation is inherent to Simulink. In order to 
exploit the design space exploration advantages 
offered by the block-based design approach over 
hand-written RTL, additional steps are required by 
the designer when creating the Simulink model. In 

particular, the model must be structured to enable 
a parameter-driven algorithmic space exploration. 
For the examples analyzed in this paper, the 
models are implemented to enable 
experimentation with different matrix sizes, vector 
sizes, and (in the case of the Cholesky solver) 
number of parallel channels. Once a model has 
been created incorporating this type of flexibility, 
performance and the resource usage estimates for 
various design configurations can be explored by 
varying these parameters. An understanding of 
hardware design is also required to achieve good 
throughput rates and resource utilization, as 
exemplified in the floating-point accumulator 
block discussed in Section 2 of this paper. 

Training for the DSP Builder Advanced 
Blockset design flow entails a 4-hour class by 
Altera and approximately 10 hours of on-line 
tutorials and demos. In addition, BDTI spent 
approximately 90 hours exploring the tool and 
both models for hands-on experience. The time 
and effort required to get up to speed with the 
tool chain will depend on the skills and 
background of the designer. A seasoned engineer 
with both Simulink block-based design and FPGA 
hardware design experience will likely find the 
DSP Builder Advanced Blockset approach 
efficient and easy to use. For an FPGA designer 
with little or no knowledge of MATLAB and 
Simulink, designing at a higher level of abstraction 
may represent a new way of thinking and thus an 
initial challenge, entailing a significant learning 
curve. Once the methodology is mastered, the 
designer can achieve significantly faster design 
cycles than a HDL approach. One can focus on 
implementing the algorithm and not worry about 
hardware design details such as pipelining. Design 
and verification time is significantly reduced since 
the majority of functional simulation and 
verification is done in the Simulink environment. 
The RTL output from the Simulink compilation 
may be run in the ModelSim software for a full 
functional simulation. 

The learning curve may be less steep for an 
engineer with system-level design background 
who has little or no skills in hardware design. 
Although the tool chain integrates hardware 
compilation, synthesis, routing, and automatic 
script generation within the Simulink environment 
and abstracts away many complex design concepts 
such as data pipelining and signal vectorizing, 
some knowledge of hardware design is still needed 
to complete an implementation. 
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4. Performance Results 
This section presents the results of BDTI’s 

independent evaluation of the Altera Cholesky 
and QR solvers floating-point implementation 
examples. 

All designs used Altera’s DSP Builder 
Advanced Blockset v12.0, with MathWorks 
release R2011b, and built with Quartus II design 
software v12.0 SP1. RTL simulations were done 
using ModelSim 10.1. The designs were built for 
two Altera 28-nm FPGAs: the high-end medium-
size Stratix V 5SGSMD5K2F40C2 device, and the 
mid-range Arria V 5AGTFD7K3F40I3N device. 
The Stratix V FPGA used in this analysis, features 
345.2K ALUTs, 1,590 27×27-bit variable-
precision multipliers, and 2,014 M20K memory 
blocks. The Arria V FPGA features 380.4K 
ALUTs, 1,156 27×27-bit variable-precision 
multipliers, and 2,414 M10K memory blocks. The 
hardware platforms used for RTL evaluation were 
the DSP Development Kit, Stratix V Edition, and 
the Arria V FPGA Development Kit. The 
ModelSim software was used for one 
configuration to assess ease of use of the tool 
from the Simulink environment.  

Combined, a total of eleven cases were 
simulated and built for both designs on the two 
devices. Resource utilization, performance, and 
accuracy results were recorded for each case. 
Table 1 lists the resource utilization and clock 

speed achieved for the Cholesky and QR solvers 
for each configuration. The Cholesky solver 
design provides a maximum matrix size parameter. 
At runtime, matrix sizes smaller than the 
maximum design size may be used.  For the 
resource utilization results presented in Table 1, 
each configuration was synthesized with the 
maximum matrix size parameter equal to the 
matrix size under evaluation in order to obtain the 
actual resources consumed by the reported matrix 
size. The resources used by the stimuli blocks 
were not included in the totals. It is worthwhile to 
note that none of the configurations evaluated in 
this paper used the FPGAs to capacity. To achieve 
the best Fmax in a reasonable amount of synthesis 
and place-and-route time in the Quartus II 
software, identical preset optimization parameters 
were used for each design to improve speed. We 
chose the 6/90×90/45 configuration for the 
Cholesky design example to run the Quartus II 
software’s Design Space Explorer (DSE) to assess 
the speed improvement and time taken for 
synthesis as compared to the push-button mode. 
In this case, a speed improvement of 12.5% was 
achieved, however the Quartus II software run 
time increased from 2 hours to 7.5 hours to 
synthesize the design. 

The FPGA resource utilization is consistent 
with expectations for the designs under 
evaluation. Memory use is dominated by matrix 
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e Configuration 

(Channel Size/ 
Matrix Size/ 
Vector Size) 

ALUT 
(K) 

(Used / 
% of 
Total) 

Registers 
(K) 

(Used / 
% of Total) 

DSP Blocks 
(Variable- 

Precision 27×27 
Multipliers used/ 

% of Total) 

M20K (Stratix) 
/M10K (Arria) 
(Blocks used / 
% of Total) 

Fmax,  
(MHz) 
P: Push-

button used 
D: DSE used 
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y 

S
tr
a
ti
x
 V
 1 / 360×360 / 90 198 / 57% 339 / 49% 391 / 25% 1411 / 70% 189 (P) 

20 / 60×60 / 60 135 / 39% 235 / 34% 268 / 17% 955 / 48% 234 (P) 

64 / 30×30 / 30 74 / 22% 124 / 18% 146 / 9% 793 / 39% 288 (P) 

A
rr
ia
 V
 

6 / 90×90 / 45 104 / 27% 179 / 24% 214 / 19% 1094 / 45% 
176 (P) 
198 (D) 

64 / 30×30 / 30 73 / 19% 121 / 16% 154 / 13% 1694 / 70% 185 (P) 

Q
R
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 V
 1 / 400×400 / 100 184 / 53% 377 / 55% 428 / 27% 1566 / 78% 203 (P) 

1 / 200×100 / 100 180 / 52% 375 / 54% 428 / 27% 504 / 25% 207 (P) 

1 / 200×100 / 50 96 / 28% 201 / 29% 228 / 14% 281 / 14% 260 (P) 

1 / 100×50 / 50 95 / 28% 198 / 29% 227 / 14% 230 / 12% 259 (P) 
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1 / 200×100 / 50 97 / 25% 202 / 27% 238 / 21% 372 / 15% 171 (P) 

1 / 100×50 / 50 95 / 25% 200 / 26% 237 / 21% 245 / 10% 170 (P) 

 
Table 1 Resource utilization and clock speed 
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storage and is proportional to the matrix size and 
the number of channels for a multi-channel 
design. The DSP blocks usage increases linearly 
with the vector size. The vector multiplier requires 
4 variable-precision DSP blocks per 27-bit × 27-
bit complex valued floating-point multiplication. 
Given a vector size of 60 complex floating-point 
values, 240 DSP blocks are required for the vector 
dot product engine.  

Table 2 shows the performance of the 
Cholesky and the QR solvers for all 
configurations. The performance for each case is 
given at the Fmax reported in Table 1. The 
throughput is calculated by dividing Fmax by the 
cycles consumed by the solver forward subsystem 
execution. Since the backward substitution 
subsystem executes in parallel and with lower 
latency than the forward subsystem, the overall 
throughput is not affected by the former. For the 
multi-channel Cholesky solver throughput, this 
result is multiplied by the number of channels that 
are processed in parallel (Channel Size parameter 
in Table 2). The overall latency for each case is 
calculated by dividing the total cycles taken by the 
execution of the forward and backward 
subsystems by Fmax. The choice of vector size 
relative to matrix size is a compromise and is 
application dependent. If the vector size is much 
smaller than the matrix size, the design will be 
resource efficient at the expense of latency, as 
shown for the QR solver 200×100 matrix size 
configurations with different vector sizes.  

The multi-channel Cholesky design improves 
upon the single-channel design that was analyzed 
in the previous paper by BDTI. In the single-
channel implementation, latencies, such as those 
found in the floating-point accumulator were 
partially hidden by rearranging the processing 
order in the algorithm. As reported in reference 
[1], the efficiency of the single-channel 
implementation depended mostly on the matrix 
and vector sizes. Looking at the throughput 
column of Table 2, the multi-channel 
implementation has significant benefits in 
processing efficiency, particularly for smaller size 
matrices and vector sizes. Multi-channel 
processing improves throughput by completely 
hiding the implementation latencies described in 
Section 2 of this paper. For a given matrix and 
vector sizes, a multi-channel implementation will 
deliver a higher peak throughput than its single-
channel counterpart.  

The last column in the table shows the number 
of real-data floating-point operations per second 
in units of 109 (GFLOPS) for each of the 
configurations. The number of operations 
required by each solver depends on the 
decomposition algorithm used. The reported 
numbers were derived from the actual 
implementation of the Cholesky solver and QR 
solver algorithms in floating-point complex-data 
format on the two FPGAs used for this 
evaluation. For the Cholesky solver, the number 
of real-data floating-point operations is 
approximated to the second order term 4n3/3 + 
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20 / 60×60 / 60 118.35 330 @ 234 39 

64 / 30×30 / 30 544.28 222 @ 288 26 

Arria V 6 / 90×90 / 45 
31.31 
35.22 

347 @ 176 
308 @ 198 

34 
38 

64 / 30×30 / 30 349.62 344 @ 185 16 
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Stratix V 1 / 400×400 / 100 0.315 3970 @ 203 162 

1 / 200×100 / 100 8.76 167.0 @ 207 141 

1 / 200×100 / 50 6.17 204.5 @ 260 99 

1 / 100×50 / 50 32.82 43.3 @ 259 66 

Arria V 1 / 200×100 / 50 4.05 311 @ 171 65 

1 / 100×50 / 50 21.54 66 @ 170 44 
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12n2, whereas for the QR solver 8mn2 + 6.5n2 + 
mn is used.  

Table 3 shows the error performance of the 
Cholesky and QR solvers for both the Simulink 
simulation and the design implementation running 
on the hardware development boards using single-
precision floating-point operations. The error is 
calculated by comparing the output of each of the 
Simulink and the hardware platform simulations 
with the double-precision floating-point reference 
for the solution vectors x generated by MATLAB. 
For the multi-channel Cholesky solver cases, only 
the error performance of a single randomly 
chosen channel is reported for brevity. Although 
the error performance is input data dependent, on 
average, the RTL implementation benefits from 
the fused datapath methodology and achieves a 
statistically equal or higher precision than the 
standard IEEE 754 single-precision 
implementation as demonstrated by comparing 
the Frobenius Norm in columns (4) and (5) of 
Table 3. We use the Frobenius Norm to get a 
measure of the overall error magnitude in the 
resultant vector and is given by: 

‖-‖. � �∑ |0	|12	�3  

Where N is the size of the vector, e is the 
difference vector between observed x and its 
MATLAB generated golden reference, and i is the 
index of the elements in vector e. The maximum 
normalized error is given by:  

max	 �7��	_89:  �	_&;<�/�	_&;<7� 

5. Conclusions 
In this paper, we evaluated a new approach to 

implementation of floating-point DSP algorithms 
on FPGAs using Altera’s DSP Builder Advanced 
Blockset design flow. This design flow 
incorporates the Altera DSP Builder Advanced 
Blockset, Altera’s Quartus II software tool chain, 
and ModelSim simulator, as well as MATLAB and 
Simulink from MathWorks. This approach allows 
the designer to work at the algorithmic behavioral 
level in the Simulink environment. The tool chain 
combines and integrates the algorithm modeling 
and simulation, RTL generation, synthesis, place 
and route, and design verification stages within the 
Simulink environment. This integration enables 
quick development and rapid design space 
exploration both at the algorithmic level and at the 
FPGA level, and ultimately reduces overall design 
effort. Once the algorithm is modeled and 
debugged at a high level, the design can be 
synthesized, and targeted to an Altera FPGA.  

 For the purpose of this evaluation, the design 
examples were single-precision complex-data 
IEEE 754 floating-point Cholesky and QR solvers 
modeled in Simulink using the Altera DSP Builder 
Advanced Blockset. The largest design example 
we evaluated was a QR solver for a complex-
valued floating-point matrix of size 400×400 and a 
vector size of 100. Running at 203 MHz this 
example processes 162 GFLOPS. The reported 
GFLOPS values in Table 2 are for the actual 
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Floating-Point 
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Single-Precision Error 
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Methodology) 
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Maximum Normalized Error) 

C
h
o
le
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1 / 360×360 / 90 2.11e-6 / 1.02e-4 1.16e-6 / 8.58e-5 
7 / 60×60 / 60 4.24e-7 / 8.59e-6 1.82e-7 / 2.62e-6 
53 / 30×30 / 30 7.48e-8 / 2.08e-6 3.84e-8 / 1.15e-6 

Arria V 
3 / 90×90 / 45 4.08e-7 / 9.72e-6 1.99e-7 / 5.52e-6 
63 / 30×30 / 30 8.93e-8 / 2.38e-6 5.91e-8 / 1.24e-6 

Q
R
 

Stratix 
V 

1 / 400×400 / 100 4.53e-6 / 1.45e-4 5.15e-6 / 1.03e-4 
1 / 200×100 / 100 1.24e-6 / 1.13e-5 9.97e-7 / 8.15e-6 
1 / 200×100 / 50 8.38e-7 / 6.70e-6 8.97e-7 / 4.15e-6 
1 / 100×50 / 50 9.13e-7 / 4.68e-6 6.96e-7 / 4.94e-6 

Arria V 
1 / 200×100 / 50 9.27e-7 / 2.33e-5 9.31e-7 / 9.95e-6 
1 / 100×50 / 50 9.13e-7 / 4.68e-6 6.96e-7 / 4.94e-6 

 
Table 3  Error performance of the Simulink model and the synthesized RTL compared to the 

MATLAB double-precision floating-point reference 
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implementation of the Cholesky solver and the 
QR solver algorithms in floating-point complex-
data format on the two FPGAs. For a valid 
comparison with other competing platforms, the 
same algorithms should be implemented on these 
platforms and their performance measured. All 
reported performance results were achieved using 
the Altera DSP Builder Advanced Blockset tool 
flow with no hand optimization or floor planning. 
Starting from a high-level block-based design in 
Simulink, the tool chain automatically pipelined, 
generated the RTL code and synthesized the 
design to achieve usable speeds and resource 
utilization. The Altera floating-point design flow 
simplifies the process of implementing complex 
floating-point DSP algorithms on an FPGA by 
streamlining the tools under a single platform. 
With its fused datapath methodology, complex 
floating-point datapaths are implemented with 
higher performance and efficiency than previously 
possible. 

The new approach analyzed in this paper also 
entails a significant learning curve for using the 
DSP Builder Advanced Blockset. This is especially 
true for a designer not familiar with MATLAB 
and Simulink. The block-based design-entry 
approach may present an initial challenge for a 
traditional hardware designer. In addition, in order 
to exploit the advantages offered by the block-
based design approach over hand-written RTL, 
additional steps are required by the designer when 
creating the Simulink model. For example, to 
enable experimentation with different matrix and 
vector sizes, as is done in the two design examples 
in this paper, the Simulink model was structured 
to incorporate a parameter-driven design to 
explore the various design configurations. 

Currently, designers using the DSP Builder 
Advanced Blockset must limit themselves to the 
elements provided by the blockset in order to 
achieve optimized performance. Elements from 
the standard DSP Builder Blockset are not 
optimized with the floating-point compiler nor 
can they be mixed with the Advanced Blockset at 
the same hierarchy level. Hand-coded HDL 
blocks may only be imported into the Standard 
Blockset. Additionally, the DSP Builder Advanced 
Blockset is geared towards DSP implementations 
and may have limited use for designs involving 
heavy control and state machines. 

The next version of the DSP Builder 
Advanced Blockset, expected to be released by the 
end of 2012, will include floating-point extensions. 

The designer will no longer be limited to the two 
standard IEEE 754 single-precision and double-
precision formats, but will have the choice of a 
total of seven different precisions ranging from 16 
to 64 bits (exponent plus mantissa). Using the new 
Enhanced Precision Support block in the DSP Builder 
Advanced Blockset, the designer may choose the 
data-width that best fits their application. 
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