

© 2012 Berkeley Design Technology, Inc. Page 1

An Independent Analysis
of

Floating-point DSP Design Flow and Performance
on Altera 28-nm FPGAs

By the staff of

Berkeley Design Technology, Inc.

October 2012

OVERVIEW

FPGAs are increasingly used as parallel processing engines for
demanding digital signal processing applications. Benchmark results show that on
highly parallelizable workloads, FPGAs can achieve higher performance and
superior cost/performance compared to digital signal processors (DSPs) and
general-purpose CPUs. However, to date, FPGAs have been used almost
exclusively for fixed-point DSP designs. FPGAs have not been viewed as an
effective platform for applications requiring high-performance floating-point
computations. FPGA floating-point efficiency and performance has been limited
due to long processing latencies and routing congestion. In addition, the
traditional FPGA design flow, based on writing register-transfer-level hardware
descriptions in Verilog or VHDL, is not well suited to implementing complex
floating-point algorithms.

Altera has developed a new floating-point design flow intended to
streamline the process of implementing floating-point digital signal processing
algorithms on Altera FPGAs, and to enable those designs to achieve higher
performance and efficiency than previously possible. Rather than building a
datapath consisting of elementary floating-point operators (for example,
multiplication followed by addition followed by squaring), the floating-point
compiler generates a fused datapath that combines elementary operators into a
single function or datapath. In doing so, it eliminates the redundancies present in
traditional floating-point FPGA designs. In addition, the Altera design flow is a
high-level, model-based design flow using Altera’s DSP Builder Advanced
Blockset with MATLAB and Simulink from MathWorks. Altera expects that by
working at a high level, FPGA designers will be able to implement and verify
complex floating-point algorithms more quickly than would be possible with
traditional HDL-based design.

BDTI performed an independent analysis of Altera’s floating-point DSP
design flow. BDTI’s objective was to assess the performance that can be obtained
on Altera FPGAs for demanding floating-point DSP applications, and to evaluate
the ease-of-use of Altera’s floating-point DSP design flow. This paper presents
BDTI’s findings, along with background and methodology details.

© 2012 Berkeley Design Technology, Inc. Page 2

Contents

1. Introduction ... 2

2. Implementation ... 4

3. Design Flow and Tool Chain 8

4. Performance Results 11

5. Conclusions.. 13

6. References .. 14

1. Introduction

Two Floating-point Design Examples
Advances in digital chips are enabling complex

algorithms that were previously limited to research
environments to move into the realm of everyday
embedded computing applications. For example,
for many years, linear algebra (and specifically
solving for systems involving large sets of
simultaneous linear equations) has been used
mainly in research environments, where large-scale
compute resources are available and real-time
computation is usually not required. Solving for
large systems involves either matrix inversion or
some kind of matrix decomposition. In addition
to being computationally demanding, these
techniques can suffer from numeric instability if
sufficient dynamic range is not used. Therefore,
efficient and accurate implementation of such
algorithms is only practical in floating-point
devices.

Altera recently introduced floating-point
capability in the DSP Builder Advanced Blockset
tool chain to simplify implementation of floating-
point DSP algorithms on Altera FPGAs, while
improving performance and efficiency of floating-
point designs compared to traditional FPGA
design techniques. In a previous white paper [1],
BDTI analyzed and evaluated the performance
and efficiency of the Altera Quartus II software
v11.0 tool chain on a single-channel floating-
point Cholesky solver implementation example,
synthesized for the 40-nm Stratix IV and Arria IV
FPGAs.

In this paper, we evaluate the effectiveness of
Altera’s approach using the newer Quartus II
software v12.0 tool chain and assess the
performance of Altera’s 28-nm Stratix V and Arria
V FPGAs. For this evaluation, BDTI focused on
solving a large set of simultaneous linear equations
using two types of decompositions: a multi-
channel Cholesky matrix decomposition and the
QR decomposition using the Gram-Schmidt
process. These decompositions combined with
forward and backward substitutions constitute a

solution for the vector x in a simultaneous set of
linear equations of the form Ax = B.

Matrix decomposition is used in many
advanced military radar applications such as
Space-Time Adaptive Processing (or STAP) and
various estimation problems in digital
communications. The QR decomposition is
commonly used for any general m-by-n matrix A,
while the Cholesky decomposition is the preferred
algorithm for a square, symmetric, and positive
definite matrix for its high computational
efficiency. Both decompositions use very
computationally demanding algorithms and
require high data precision, making floating-point
math a necessity. In addition, the two examples
studied in this paper use vector dot products and
nested loops at the core of their algorithm, and
these operations are found in a wide range of
digital signal processing applications involving
linear algebra and finite impulse response (FIR)
filters.

In the examples described in this paper,
simultaneous sets of complex-data linear
equations are solved in both methods and the
results are reported. Using the QR solver as
shown in Section 4, an Altera Stratix V FPGA is
capable of performing 315 matrix decompositions

NOTATION AND DEFINITIONS

M Bold capital letter denotes a matrix.

z Bold small letter denotes a vector.

L
*
 The conjugate transpose of matrix L.

l
*
 The conjugate transpose of element l.

Hermitian Matrix A square matrix with complex

entries that is equal to its own conjugate transpose.

This is the complex extension to a real symmetric

matrix.

Positive Definite Matrix A Hermitian matrix M is

positive definite if z*Mz > 0 for all non-zero complex

vectors z. The quantity z*Mz is always real because M

is a Hermitian matrix for the purposes of this paper.

Orthonormal Matrix A matrix Q is orthonormal if

QTQ = I where I is the identity matrix.

Cholesky Decomposition A factorization of a

Hermitian positive definite matrix M into a lower

triangular matrix L and its conjugate transpose L* such

that M = LL*.

QR Decomposition A factorization of a matrix M of

size m-by-n into an orthonormal matrix Q of size m-by-

n and an upper triangular matrix R of size n-by-n such

that M = QR.

Fmax The maximum frequency of an FPGA design.

© 2012 Berkeley Design Technology, Inc. Page 3

per second of size 400×400, running at 203 MHz
and achieving 162×109 floating-point operations
per second (GFLOPS).

Both design examples evaluated in this paper
are provided as part of the DSP Builder software
v12.0 tool chain, or they may be requested from
floatingpoint@altera.com.

Floating-point Design Flow
Traditionally, FPGAs have not been the

platform of choice for demanding floating-point
applications. Although FPGA vendors have
offered floating-point primitive libraries, the
performance of FPGAs in floating-point
applications has been very limited. The
inefficiency of traditional floating-point FPGA
designs is partially due to the deeply pipelined
nature and wide arithmetic structures of the
floating-point operators, which create large
datapath latencies and routing congestion. In turn,
the latencies create hard-to-manage problems in
designs with high data dependencies. The final
result is often a design with a low operating
frequency.

The Altera DSP Builder Advanced Blockset
tool flow attacks these issues at both the
architectural level and the system design level. The

Altera floating-point compiler fuses large portions
of the datapath into a single floating-point
function instead of building them up by
composition of elemental floating-point operators.
It does this by analyzing the bit growth in the
datapath and choosing the optimum input
normalization to allocate enough precision
through the datapath in order to eliminate as
many normalization and denormalization steps as
possible, as shown in Figure 1. The IEEE 754
format is only used at datapath boundaries; within
datapaths, larger mantissa widths are used to
increase the dynamic range and reduce the need
for denormalization and normalization steps
between successive operators. Normalization and
denormalization functions use barrel shifters of up
to 48 bits wide for a single precision floating-point
number. This consumes a significant amount of
logic and routing resources and is the main reason
why floating-point implementations on FPGAs
have not been efficient. The fused datapath
methodology eliminates a significant number of
these barrel shifters. Multiplications involving the
larger precision mantissas use Altera’s 27-bit×27-
bit multiplier mode in Stratix V and Arria V
devices. Figure 1(b) shows the fused datapath
methodology for the simple case of a two-adder
chain as compared to the traditional
implementation shown in Figure 1(a). The fused
datapath in Figure 1(b) eliminates the inter-
operator redundancy by removing the
denormalization of the output of the first adder
and the normalization of the input of the second
adder. The elimination of the extra logic and
routing, and the use of hard multipliers make
timing and latency across complex datapaths
predictable. Both single- and double- precision
IEEE 754 floating-point algorithms are
implemented with reduced logic and higher
performance. Altera claims that a fused datapath
contains 50% less logic and 50% less latency than
the equivalent datapath constructed out of
elementary operators [2]. And, as a result of the
wider internal data representation, typically the
overall data accuracy is higher than that achieved
using a library with elementary IEEE 754 floating-
point operators.

The Altera floating-point DSP design flow
incorporates the Altera DSP Builder Advanced
Blockset, Altera’s Quartus II software tool chain,
the ModelSim simulator, as well as MATLAB and
Simulink from MathWorks. The Simulink
environment allows the designer to operate at the

Figure 1 (a) Traditional floating-point

implementation (b) Fused datapath

Normalize

Normalize

Denormalize

Denormalize

Adder
 1

Adder
2

In 1 In 2

In 3

Out

(a)

IEEE 754

IEEE 754

Normalize

Denormalize

Adder
1

Adder
2

In 1 In 2 In 3

Out

(b)

Modified
format

IEEE 754

© 2012 Berkeley Design Technology, Inc. Page 4

algorithmic behavioral level to describe, debug,
and verify complex systems. Simulink features
such as data type propagation and vector data
processing are incorporated into the DSP Builder
Advanced Blockset, enabling a designer to
perform quick algorithmic design space
exploration.

In order to evaluate the efficiency and
performance of Altera’s floating-point design
flow, BDTI used the DSP Builder Advanced
Blockset tool flow to validate two examples, both
solving a set of simultaneous linear equations
using complex data-type in single-precision
floating-point representation. One solution is
achieved using the Cholesky decomposition, while
the other uses QR decomposition via the Gram-
Schmidt process. Section 2 of the paper describes
the implementation of the two floating-point
examples. Section 3 presents BDTI’s experience
with the design flow and tool chain. Section 4
presents the performance of the implementation
on two different Altera FPGAs: the high-end
medium-size Stratix V 5SGSMD5K2F40C2N
device and the mid-range Arria V
5AGTFD7K3F40I3N device. Finally, Section 5
presents BDTI’s conclusions.

2. Implementation

Background
Sets of linear equations of the form Ax = b

arise in many applications. Whether it is an
optimization problem involving linear least
squares, a Kalman filter for a prediction problem,
or MIMO communications channel estimation,
the problem remains one of finding a numerical
solution for a set of linear equations of the form
Ax = b. For a general matrix of size m-by-n, where
m is the height of the matrix and n its width, QR
decomposition may be used to solve for vector x.
The algorithm decomposes A into an orthonormal
matrix Q of size m-by-n and an upper triangular
matrix R of size n-by-n. Since Q is orthonormal,
QTQ = I and Rx = QTb. Given that R is an upper
triangular matrix, x can easily be solved by
backward substitution without even inverting the
original matrix A. In the QR example in this paper
we work with over-determined matrices with m ≥n.

When matrix A is symmetric and positive
definite, such as covariance matrices that arise in
many problems, the Cholesky decomposition and
solver are commonly used. The algorithm finds
the inverse of matrix A thus solving for vector x

in x				=	���b. The Cholesky decomposition is at
least twice as efficient as QR decomposition
depending on the algorithms used for the
decomposition. Since these decomposition
algorithms are recursive in nature and involve
division, a large numeric dynamic range becomes a
necessity as the matrix size increases. Most
implementations, even for matrix sizes as small as
4×4 in MIMO channel estimation, for example,
are performed using floating-point operations. For
larger systems requiring high throughput, such as
the ones found in military applications, the
required floating-point operation rate has typically
been prohibitive for embedded systems.
Frequently, designers either abandon the whole
algorithm for a sub-optimum solution or resort to
using multiple high-performance floating-point
processors, raising cost and design effort.

Architectural Overview
Cholesky Solver
In our design example, the Cholesky solver is

implemented in the FPGA as two subsystems
operating in parallel in a pipelined fashion. The
first subsystem executes the Cholesky
decomposition and forward substitution—steps 1
and 2 in the sidebar titled The Cholesky Solver. The
second subsystem executes the backward
substitution—step 3 in the same sidebar. Since the
input matrix is Hermitian and the decomposition
generates complex conjugate transposed triangular
matrices, memory utilization is optimized by
loading only the lower triangular half of the input
matrix A and overwriting it as the lower triangular
matrix L is generated. Both subsystems are
pipelined, utilizing an input stage and a processing
stage to allow processing to occur in one area of a
memory while the other half is used for loading
new data. The output of the decomposition and
forward substitution stage goes into the input
stage of the backward substitution, as shown in
Figure 2.

The core of the decomposition is the complex
vector dot product engine (also referred to as the
vector multiplier) which computes equations (3)
and (4). For the Stratix V device, a vector size
(VS) of up to 90 complex-data elements is used,
whereas for the Arria V device, a vector size of up
to 45 complex-data elements is implemented. The
vector size also corresponds to the number of
parallel memory reads needed to supply the dot
product engine with a new set of data every clock
cycle and thus determines the width and

© 2012 Berkeley Design Technology, Inc. Page 5

partitioning of the on-chip dual-port memory. For
implementation reasons, the storage of a matrix of

a given size is partitioned into ceil (N/VS) memory
banks, where ceil() is the ceiling function and N is
the size of the matrix.

The Cholesky solver design is a multi-channel
implementation. The maximum number of
channels is a compile-time parameter and is
limited only by the available memory on the
device. The memory partitioning is identical to a
single-channel implementation except that
multiple copies of the same structure are used.

 The decomposition is performed one element
at a time, column-wise, starting from the top left
corner, proceeding in a vertical zigzag fashion, and
ending at the bottom right corner of the matrix as
shown in Figure 3(a). The diagonal element of
each column is calculated first, followed by all the
non-diagonal elements below it in the same
column before moving to the diagonal element at
the top of the next column to the right. The
schedule of events and iterations is controlled with
a four-level nested for loop. The outermost loop
implements column-wise processing; the second
loop implements bank-wise processing; the third
inner loop processes the rows; and the innermost
loop processes the multiple channels. Placing the
channel processing as the innermost loop
effectively turns the floating-point accumulator
into a time-shared accumulator and hides its
latency better. The NestedLoops block in the DSP
Builder Advanced Blockset integrates up to three
nested loops in a single processing block, making
the implementation faster and more resource
efficient when compared to a similar function that
is implemented as three separate for-loop blocks.
The block abstracts away the intricate loop control
signals, reduces design and debug times, and
makes the overall loop structure more readable.

The dot product engine operates on the rows
of the matrix and calculates up to vector size
multiplications in the summation term of
equations (3), (4), and (6) simultaneously in one
cycle. A circular memory structure is used at the
input of the dot product engine to cycle over the
rows of the multiple input matrices. For vector
dot products shorter than vector size, unused
terms are masked out and are not included in the
summation. For dot products longer than vector
size, partial sums of products are calculated and
saved at bank boundaries until the output of all
banks for a given element in that row are available
for a final summation, as shown in Figure 3(b).
The summation of the bank outputs is performed
in a single accumulator loop using the floating-

THE CHOLESKY SOLVER

The recursive Cholesky algorithm used to solve for vector

x in Ax = b has three steps:

Step 1. Decomposition, i.e. finding the lower triangular

matrix L, where A = LL*

��� � √��� (1)

for i = 2 to n,

�	� � �	� ���
 (2)

for j = 2 to (i-1),

�	� 	� ��	� 	∑ �	����
��� � ���∗� ���
 (3)

end

�		 � 	��		 	∑ ��	�	����� � �	�∗� (4)

end

Note the dependencies in the equations above. The

diagonal elements in eq. (4) depend only on elements to

their left in the same row. Non-diagonal elements depend

on elements to their left in the same row, and on the

elements to the left of the corresponding diagonal element

above them.

Step 2. Forward substitution, i.e. solving for y in the

equation Ly = b,

�� � 	�� ���⁄ (5)

for i = 2 to n,

�	 � ��	 ∑ ��	����� � �	�� �		⁄ (6)

end

Step 3. Backward substitution, i.e. solving for x in the

equation L* x = y,

�� � �� ���∗⁄ (7)

for i = n-1 to 1,

�	 � ��	 ∑ �����	�� � �	�∗ �/�		∗ (8)

end

where,

n = the dimension of matrix A

lij = element at row i column j of matrix L

aij = element at row i column j of matrix A

yi = element at row i of vector y

bi = element at row i of vector b

xi = element at row i of vector x

The output of step 1 is the Cholesky decomposition, and

the output of step 3 is the solution x of the linear equation

Ax = b. Note that the algorithm indirectly finds the inverse

of matrix A to solve for x = A-1 b.

© 2012 Berkeley Design Technology, Inc. Page 6

point adder block from the DSP Builder
Advanced Blockset. This feedback loop has a

latency of 13 cycles. By swapping the for Banks
loop and the for Rows loop relative to the order
that one would traditionally have in a software
implementation, and adding multi-channel
processing, the floating-point accumulator latency
is hidden and hardware utilization is improved.
The DSP Builder Advanced Blockset
automatically calculates loop delays to address this
type of latency. The tool can be instructed to
calculate and fill in the minimum delay by
checking the Minimum delay box in the Loop Delay
block. Paths that incur identical delays may be
assigned an equilvalence group number and the
tool will then assign the same delay value to all
members in the group. Although not used in the
examples evaluated in this paper, the DSP Builder
Advanced Blockset provides an Application
Specific Floating-Point Accumulator where the
user can customize the accumulator to optimize
its speed and resource requirements by
configuring parameters such as maximum input
size and required accumulation accuracy. This
block allows for single-cycle-per-sample
accumulation of a single stream of floating-point
numbers at a high clock rate.

The second subsystem performs backward
substitution. This subsystem has its own input and
output memory blocks. Like the Cholesky forward
substitution subsystem, it is pipelined into an
input stage and a processing stage. Since the
complexity of the backward substitution is on the
order of N2 compared to N3 for the
decomposition, vector processing is not employed
for the dot product. Instead, a single complex
multiplier is used for the dot product which is
enough to keep pace with the Cholesky
decomposition and the forward substitution
subsystem.

QR Solver
The QR decomposition and solver is

implemented as two subsystems operating in
parallel in a pipelined fashion as shown in Figure
4. The first subsystem executes steps 1 and 2 in
the sidebar titled The QR Solver, whereas the
second subsystem executes the backward
substitution in step 3. The backward substitution
subsystem is identical to the one used in the
Cholesky solver. In contrast to Cholesky where
equations (1) to (6) are implemented as a single
four-deep nested loop, the QR solver employs a
simple finite state machine (FSM) to cycle through
four main operations; finding the magnitude
square of a vector in equation (2), the dot product

THE QR SOLVER

Solving for x in Ax = b via QR decomposition using the

Gram-Schmidt process has three steps:

Step 1. Decomposition of matrix A of size m-by-n, i.e.

finding the matrices Q of size m-by-n, and R of size n-by-

n, where A = QR.

�� � �� (1)

for k = 1 to n,

�_ !�� � ∑ "��∗#��� � "�� (2)

��� � $�_ !�� (3)

for i = (k+1) to n, and k % n,

��	 � �
&'' ∑ "��∗#��� � ��	 (4)

end

t = k + 1, and k % n, (5)

for i = 1 to m, and k < n,

"	(� �	(∑ ��(���� � "	� �_ !��
 (6)

end

end

Note that the orthonormal matrix Q = [q1 q2 …qn], is not

explicitly calculated but rather its orthogonal form, U = [u1

u2 … un], is found and used in this restructured set of

equations, where qi =
�	 ‖�	‖
 .

Step 2. Calculating d, where d = QTb.

for k = 1 to n,

*� � ∑ "��∗#��� � �� ���⁄ (7)

end

Step 3. Backward substitution, i.e. solving for x in the

equation Rx = d.

for i = n-1 to 1,

�	 � �*	 ∑ �	�∗���	�� � ���/�		∗ (8)

end

where,

m = the row dimension of matrix A

n = the column dimension of matrix A

ui = ith column of matrix U

uij = element at row i column j of matrix U

rij = element at row i column j of matrix R

ai = ith column of matrix A

aij = element at row i column j of matrix A

di = element at row i of vector d

bi = element at row i of vector b

xi = element at row i of vector x

The QR solver finds the solution x of the linear equations

Ax = b without finding the inverse of matrix A which may

be undefined.

© 2012 Berkeley Design Technology, Inc. Page 7

of two vectors in equation (4), subtracting a dot
product from a vector in equation (6), and the dot
product in equation (7) to find vector d. The
NestedLoop block in the DSP Builder Advanced
Blockset is used in all phases of the FSM to
generate all control and event signals for the
datapath.

The common processing block in the four
operations listed above is the dot product engine.
In order to increase performance, vector
processing is used to calculate the dot product.
Similar to the Cholesky design, the vector size is a
compile-time parameter. To reuse this engine in all
four states of the FSM, a data multiplexer is used
at its input and controlled by the FSM event
controller. The multiplexer selects the correct
inputs for the dot product engine for each state of
the FSM. The details of the dot product engine
and the floating-point accumulator are similar to
those in the Cholesky design and hence are not
presented here.

The memory needed for the QR
decomposition is optimized by reusing the main
core memory block that initially holds matrix A
and input vector b. Processing happens column-
wise, left to right, in the core memory. Once a
column is consumed and no longer needed, it is
overwritten by the corresponding column of a
new matrix. By the time the old matrix A is
decomposed, the original contents of this memory
block are replaced by the new matrix, thus
maintaining the capability of back-to-back matrix
processing without any stalls.

In the first two states of the FSM, elements of
the R matrix are generated element-by-element
row-wise starting with the diagonal element for
each row. In the subtraction state of the FSM, the
columns of matrix A in the core memory are
recursively updated and replaced by the partially

calculated vectors. For example, at column k,
all columns k+1 to n are updated in memory by

subtracting the scaled version of from each of

 VS
.
.
.

VS

Bank boundaries at multiples of

vector size (VS). Partial sum of

products are generated at these

points and saved until all rows

below are processed (for bank

loop).

e
ij

j

.

.

.

i

… …

Last

First

(a) (b

Figure 3 (a) Processing sequence (b) Computation of diagonal element eij includes two partial

sum-of-products at j=VS and j=2*VS, plus the last remaining partial dot product section

Figure 2 Cholesky process pipelining and memory reuse

Input

Input

Decomposition/Forward

Decomposition/Forward

Input

Processing in the upper triangular memory
space

Processing in the

lower triangular

memory space

Decomposition / Forward Substitution Subsystem

Backward

Backward

Backward Substitution Subsystem

Processing in the lower triangular

memory space

Processing in the upper triangular

memory space

Time

Input

Input

…

…

…

Input

…

© 2012 Berkeley Design Technology, Inc. Page 8

the columns k+1 to n. This process recursively

calculates the vectors +��� to +� and is a more
efficient version of equation (6) for hardware
implementation. Processing column-wise, in the
fourth state of the FSM, each newly calculated

+� 	is multiplied with input vector b to generate a
single element *� of column vector d. The Q
matrix is not explicitly generated, but its

orthogonal columns,	+�, are generated, used in
subsequent phases of the FSM, and overwritten by

the corresponding column, ,�, of the new matrix
in the next cycle of the FSM. Figure 5 shows the
memory organization and processing sequence of
the QR decomposition subsystem.

The outputs of the first subsystem are the R
matrix and the column vector d. The R matrix is
an upper triangular matrix and is generated row-
wise left to right as shown in equations (3) and (4).
A rectangular memory structure is used in a ping-
pong manner. While the upper triangular section
is being processed by the backward substitution
subsystem, the lower triangular section is getting
filled by the decomposition subsystem, and vice

versa. The d column vector is appended to the R
matrix and is generated row-wise top to bottom.
The output of the backward substitution, is the
solution vector x of the linear equations Ax = b.

The QR solver may be implemented in a multi-
channel format similar to the Cholesky solver to
improve utilization, reduce latency, and increase
the throughput of the design. The throughput
improvement would mainly come from the
effective reduction in the latency of the floating-
point accumulator.

3. Design Flow and Tool Chain

Evaluation Methodology
For this evaluation, Altera provided BDTI

with implementations of the Cholesky and the QR
solvers created using the DSP Builder Advanced
Blockset. Altera provided BDTI engineers a PC
with the necessary Altera and MathWorks tools
installed. BDTI engineers then examined the
Altera designs, simulated and synthesized them, all
under the Simulink environment. Additionally, the

Figure 4 QR process pipelining and memory reuse

Time

Input 1

Input 1

Main core input

memory space Decomposition and Vector d

Calculation Subsystem

Back. 2

Backward Substitution
Subsystem

Decomposition sequence
of the input matrices

Dec. 1

Back. 1

…

…

…

… Input 2 Input 3 Input 4

Dec. 2 Dec. 3 Dec. 4

Input 3

Input 2

Back. 3

Input 4 Back. 4 Processing in the lower

triangular memory space

Processing in the upper

triangular memory space

… …

New A
a

1
 a

2
 a

3

Current
vector u

k

Modified
u

k+1
 to u

n

Main core memory

…

Column-wise processing

R
o
w

-w
is

e
p

ro
ce

ss
in

g

R matrix

d vector

d
1

d
2

d
3

d
k

T
o
p

 t
o
 b

o
tt

o
m

 p
ro

ce
ss

in
g
 r

1

r

2

r

3

r
k

D
ec

o
m

p
o
si

ti
o
n

su
b

sy
st

em

Figure 5 Memory organization of the QR decomposition subsystem

© 2012 Berkeley Design Technology, Inc. Page 9

synthesized designs were run on two separate
devices: the Stratix V and Arria V FPGAs. In the
process, BDTI evaluated the Altera design flow
and the performance of the two design examples.

Since the boards used for this evaluation
lacked the ability to generate the stimuli for the
example designs, each of the two designs contains
a stimulus generation block that is implemented
using DSP Builder Advanced Blockset blocks and
compiled with the application design under test
(DUT). In order to minimize the impact of the
stimulus block on DUT performance and FPGA
resource usage, matrix A is generated on-the-fly by
the stimulus block from a much smaller set of
random data. This small set of data is generated by
MATLAB m-file scripts, loaded into the stimulus
block memory and compiled with the design.
These MATLAB scripts use the same algorithm as
the stimulus block in the DUT to generate the
double-precision floating-point format reference
data for the solution vector x to measure the error
performance of the Simulink models and the
designs running on the FPGAs. In the Cholesky
design this algorithm guarantees Hermitian
positive definiteness for matrix A, whereas in the
QR solver design it guarantees the creation of a
well-conditioned A matrix.

Four configurations of vector, matrix, and
channel sizes were implemented for the Cholesky
solver design, three configurations on the Stratix
V FPGA and two configurations on the Arria V
device, with one common configuration between
the two. For the QR solver design, four
configurations were implemented for the Stratix V
FPGA, and two of these were also implemented
on the Arria V device. All configurations were
evaluated for FPGA resource utilization,
achievable clock rate, throughput, and functional
correctness. FPGA design constraints, such as
clock rate, device selection, and speed grade are
specified in the Simulink environment.

Throughput and performance were evaluated
at the Simulink model and the hardware platform
levels. The Simulink model of both designs is
instrumented to display both the forward
processing and the total of forward and backward
processing cycles, and the Quartus II software
runs give the Fmax achieved for each configuration.
Each configuration is then downloaded to the
hardware platform, its operating frequency set to
Fmax, and processing is started. The solution
vectors x of each solver are captured for each
configuration and compared against the

corresponding MATLAB generated double-
precision floating-point references.

A post-simulation script calculates the
difference between the Simulink IEEE 754 single-
precision floating-point output and the MATLAB
generated double-precision floating-point
reference vectors. Similarly, a script calculates the
difference between the captured output of the
hardware simulations and that of the MATLAB
generated double-precision floating-point
references.

Evaluation of the Tool Chain
Simulink is built upon and requires the

MATLAB framework. In the Simulink
environment, the evaluated designs use blocks
from the Altera DSP Builder Advanced Blockset,
which is a separate blockset from the standard
DSP Builder library. The DSP Builder Advanced
Blockset is geared towards block-based
implementation of DSP algorithms and datapaths
and uses a higher level of abstraction than the
standard DSP Builder library, which comprises
more general and elementary blocks. The DSP
Builder Advanced Blockset library contains over
50 common trigonometric, arithmetic, and
Boolean functions in addition to the more
complex fast Fourier transform (FFT) and FIR
filter building blocks. Notable additions in
Quartus II software v12.0 are the low-latency
square root, the nested for loop, and a
customizable floating-point accumulator blocks.
Elements from the standard Blockset and the DSP
Builder Advanced Blockset cannot be mixed in a
datapath structure at the same hierarchy level; only
blocks from the DSP Builder Advanced Blockset
support the floating-point compiler. Blocks from
the standard Blockset are not optimized for
floating-point processing. In addition, although
importing of hand-coded HDL is available for the
standard Blockset, it is not available in the DSP
Builder Advanced Blockset since the tool cannot
perform optimizations at the HDL level. In
general, the block-based design-entry approach is
well suited for DSP algorithms; however, due to
the lack of constructs such as case or switch in the
block library, a text-based approach is more
intuitive for designs that are control-intensive and
involve state machines.

Starting a simulation with DSP Builder
Advanced Blockset compiles the Simulink model,
generates HDL code and constraints for the
Altera Quartus II software environment, builds a

© 2012 Berkeley Design Technology, Inc. Page 10

test bench and script files for the ModelSim
environment, and simulates the Simulink model.
The time required to run the simulations for
various configurations ranged from 3 minutes to
28 minutes depending on matrix size on a 3 GHz
Intel Xeon W3550 PC. The Simulink simulation
generates detailed resource utilization estimates
without the need to run a Quartus II software
compilation, thus helping the designer to quickly
determine the device size needed. When using a
hardware development kit, the user must supply
pin-out assignments based on the board layout;
the user can re-use the pin-out constraints in the
provided .qsf file in the Quartus II software
project folder for the design, or use the pin
planner in Quartus II software to assign and
manage pin-outs from scratch.

Experiments were performed on the model to
evaluate the ease of algorithm exploration and the
corresponding HDL generation. Input parameters,
such as vector dot product size, matrix size, and
data type were changed in the stimulus block and
simulations run. In all cases, the correct RTL code
was generated within minutes and simulation
outputs matched the MATLAB reference.

All configurations were synthesized using the
Quartus II design software, which may be
launched directly from the Simulink environment.
A designer may use the Quartus II software in
push-button mode with either default or user-
selected optimization parameters, or use the
Design Space Explorer (DSE) tool. Available as
part of the Quartus II software, DSE
automatically runs multiple router passes using a
different seed for each pass. The route with the
best clock rate is saved. This is an automatic
process requiring no user intervention but takes
much longer than the push-button method. The
Quartus II software push-button runs ranged
from 1 hour to 6.5 hours depending on the design
size.

The higher abstraction level employed by the
DSP Builder Advanced Blockset design flow
allows for a faster algorithmic space exploration
and simulation cycles, thus reducing the overall
time to reach a final optimized design. However,
this advantage is not inherent to Simulink in the
same way in which, for example, data-type
propagation is inherent to Simulink. In order to
exploit the design space exploration advantages
offered by the block-based design approach over
hand-written RTL, additional steps are required by
the designer when creating the Simulink model. In

particular, the model must be structured to enable
a parameter-driven algorithmic space exploration.
For the examples analyzed in this paper, the
models are implemented to enable
experimentation with different matrix sizes, vector
sizes, and (in the case of the Cholesky solver)
number of parallel channels. Once a model has
been created incorporating this type of flexibility,
performance and the resource usage estimates for
various design configurations can be explored by
varying these parameters. An understanding of
hardware design is also required to achieve good
throughput rates and resource utilization, as
exemplified in the floating-point accumulator
block discussed in Section 2 of this paper.

Training for the DSP Builder Advanced
Blockset design flow entails a 4-hour class by
Altera and approximately 10 hours of on-line
tutorials and demos. In addition, BDTI spent
approximately 90 hours exploring the tool and
both models for hands-on experience. The time
and effort required to get up to speed with the
tool chain will depend on the skills and
background of the designer. A seasoned engineer
with both Simulink block-based design and FPGA
hardware design experience will likely find the
DSP Builder Advanced Blockset approach
efficient and easy to use. For an FPGA designer
with little or no knowledge of MATLAB and
Simulink, designing at a higher level of abstraction
may represent a new way of thinking and thus an
initial challenge, entailing a significant learning
curve. Once the methodology is mastered, the
designer can achieve significantly faster design
cycles than a HDL approach. One can focus on
implementing the algorithm and not worry about
hardware design details such as pipelining. Design
and verification time is significantly reduced since
the majority of functional simulation and
verification is done in the Simulink environment.
The RTL output from the Simulink compilation
may be run in the ModelSim software for a full
functional simulation.

The learning curve may be less steep for an
engineer with system-level design background
who has little or no skills in hardware design.
Although the tool chain integrates hardware
compilation, synthesis, routing, and automatic
script generation within the Simulink environment
and abstracts away many complex design concepts
such as data pipelining and signal vectorizing,
some knowledge of hardware design is still needed
to complete an implementation.

© 2012 Berkeley Design Technology, Inc. Page 11

4. Performance Results
This section presents the results of BDTI’s

independent evaluation of the Altera Cholesky
and QR solvers floating-point implementation
examples.

All designs used Altera’s DSP Builder
Advanced Blockset v12.0, with MathWorks
release R2011b, and built with Quartus II design
software v12.0 SP1. RTL simulations were done
using ModelSim 10.1. The designs were built for
two Altera 28-nm FPGAs: the high-end medium-
size Stratix V 5SGSMD5K2F40C2 device, and the
mid-range Arria V 5AGTFD7K3F40I3N device.
The Stratix V FPGA used in this analysis, features
345.2K ALUTs, 1,590 27×27-bit variable-
precision multipliers, and 2,014 M20K memory
blocks. The Arria V FPGA features 380.4K
ALUTs, 1,156 27×27-bit variable-precision
multipliers, and 2,414 M10K memory blocks. The
hardware platforms used for RTL evaluation were
the DSP Development Kit, Stratix V Edition, and
the Arria V FPGA Development Kit. The
ModelSim software was used for one
configuration to assess ease of use of the tool
from the Simulink environment.

Combined, a total of eleven cases were
simulated and built for both designs on the two
devices. Resource utilization, performance, and
accuracy results were recorded for each case.
Table 1 lists the resource utilization and clock

speed achieved for the Cholesky and QR solvers
for each configuration. The Cholesky solver
design provides a maximum matrix size parameter.
At runtime, matrix sizes smaller than the
maximum design size may be used. For the
resource utilization results presented in Table 1,
each configuration was synthesized with the
maximum matrix size parameter equal to the
matrix size under evaluation in order to obtain the
actual resources consumed by the reported matrix
size. The resources used by the stimuli blocks
were not included in the totals. It is worthwhile to
note that none of the configurations evaluated in
this paper used the FPGAs to capacity. To achieve
the best Fmax in a reasonable amount of synthesis
and place-and-route time in the Quartus II
software, identical preset optimization parameters
were used for each design to improve speed. We
chose the 6/90×90/45 configuration for the
Cholesky design example to run the Quartus II
software’s Design Space Explorer (DSE) to assess
the speed improvement and time taken for
synthesis as compared to the push-button mode.
In this case, a speed improvement of 12.5% was
achieved, however the Quartus II software run
time increased from 2 hours to 7.5 hours to
synthesize the design.

The FPGA resource utilization is consistent
with expectations for the designs under
evaluation. Memory use is dominated by matrix

E
x
a
m
p
le

D
ev
ic
e Configuration

(Channel Size/
Matrix Size/
Vector Size)

ALUT
(K)

(Used /
% of
Total)

Registers
(K)

(Used /
% of Total)

DSP Blocks
(Variable-

Precision 27×27
Multipliers used/

% of Total)

M20K (Stratix)
/M10K (Arria)
(Blocks used /
% of Total)

Fmax,
(MHz)
P: Push-

button used
D: DSE used

C
h
o
le
sk
y

S
tr
a
ti
x
 V
 1 / 360×360 / 90 198 / 57% 339 / 49% 391 / 25% 1411 / 70% 189 (P)

20 / 60×60 / 60 135 / 39% 235 / 34% 268 / 17% 955 / 48% 234 (P)

64 / 30×30 / 30 74 / 22% 124 / 18% 146 / 9% 793 / 39% 288 (P)

A
rr
ia
 V

6 / 90×90 / 45 104 / 27% 179 / 24% 214 / 19% 1094 / 45%
176 (P)
198 (D)

64 / 30×30 / 30 73 / 19% 121 / 16% 154 / 13% 1694 / 70% 185 (P)

Q
R
 S
tr
a
ti
x
 V
 1 / 400×400 / 100 184 / 53% 377 / 55% 428 / 27% 1566 / 78% 203 (P)

1 / 200×100 / 100 180 / 52% 375 / 54% 428 / 27% 504 / 25% 207 (P)

1 / 200×100 / 50 96 / 28% 201 / 29% 228 / 14% 281 / 14% 260 (P)

1 / 100×50 / 50 95 / 28% 198 / 29% 227 / 14% 230 / 12% 259 (P)

A
rr
ia
 V

1 / 200×100 / 50 97 / 25% 202 / 27% 238 / 21% 372 / 15% 171 (P)

1 / 100×50 / 50 95 / 25% 200 / 26% 237 / 21% 245 / 10% 170 (P)

Table 1 Resource utilization and clock speed

© 2012 Berkeley Design Technology, Inc. Page 12

storage and is proportional to the matrix size and
the number of channels for a multi-channel
design. The DSP blocks usage increases linearly
with the vector size. The vector multiplier requires
4 variable-precision DSP blocks per 27-bit × 27-
bit complex valued floating-point multiplication.
Given a vector size of 60 complex floating-point
values, 240 DSP blocks are required for the vector
dot product engine.

Table 2 shows the performance of the
Cholesky and the QR solvers for all
configurations. The performance for each case is
given at the Fmax reported in Table 1. The
throughput is calculated by dividing Fmax by the
cycles consumed by the solver forward subsystem
execution. Since the backward substitution
subsystem executes in parallel and with lower
latency than the forward subsystem, the overall
throughput is not affected by the former. For the
multi-channel Cholesky solver throughput, this
result is multiplied by the number of channels that
are processed in parallel (Channel Size parameter
in Table 2). The overall latency for each case is
calculated by dividing the total cycles taken by the
execution of the forward and backward
subsystems by Fmax. The choice of vector size
relative to matrix size is a compromise and is
application dependent. If the vector size is much
smaller than the matrix size, the design will be
resource efficient at the expense of latency, as
shown for the QR solver 200×100 matrix size
configurations with different vector sizes.

The multi-channel Cholesky design improves
upon the single-channel design that was analyzed
in the previous paper by BDTI. In the single-
channel implementation, latencies, such as those
found in the floating-point accumulator were
partially hidden by rearranging the processing
order in the algorithm. As reported in reference
[1], the efficiency of the single-channel
implementation depended mostly on the matrix
and vector sizes. Looking at the throughput
column of Table 2, the multi-channel
implementation has significant benefits in
processing efficiency, particularly for smaller size
matrices and vector sizes. Multi-channel
processing improves throughput by completely
hiding the implementation latencies described in
Section 2 of this paper. For a given matrix and
vector sizes, a multi-channel implementation will
deliver a higher peak throughput than its single-
channel counterpart.

The last column in the table shows the number
of real-data floating-point operations per second
in units of 109 (GFLOPS) for each of the
configurations. The number of operations
required by each solver depends on the
decomposition algorithm used. The reported
numbers were derived from the actual
implementation of the Cholesky solver and QR
solver algorithms in floating-point complex-data
format on the two FPGAs used for this
evaluation. For the Cholesky solver, the number
of real-data floating-point operations is
approximated to the second order term 4n3/3 +

Table 2 Performance Results

E
x
a
m
p
le
 Device Configuration

(Channel Size/
Matrix Size/
Vector Size)

Throughput
Reported by
Simulink

(kMatrices/sec)

Overall
Latency
(µsec)

@Fmax (MHz)

GFLOPS
(Real

Data Type)
C
h
o
le
sk
y

Stratix V 1 / 360×360 / 90 1.43 1112 @ 189 91

20 / 60×60 / 60 118.35 330 @ 234 39

64 / 30×30 / 30 544.28 222 @ 288 26

Arria V 6 / 90×90 / 45
31.31
35.22

347 @ 176
308 @ 198

34
38

64 / 30×30 / 30 349.62 344 @ 185 16

Q
R

Stratix V 1 / 400×400 / 100 0.315 3970 @ 203 162

1 / 200×100 / 100 8.76 167.0 @ 207 141

1 / 200×100 / 50 6.17 204.5 @ 260 99

1 / 100×50 / 50 32.82 43.3 @ 259 66

Arria V 1 / 200×100 / 50 4.05 311 @ 171 65

1 / 100×50 / 50 21.54 66 @ 170 44

© 2012 Berkeley Design Technology, Inc. Page 13

12n2, whereas for the QR solver 8mn2 + 6.5n2 +
mn is used.

Table 3 shows the error performance of the
Cholesky and QR solvers for both the Simulink
simulation and the design implementation running
on the hardware development boards using single-
precision floating-point operations. The error is
calculated by comparing the output of each of the
Simulink and the hardware platform simulations
with the double-precision floating-point reference
for the solution vectors x generated by MATLAB.
For the multi-channel Cholesky solver cases, only
the error performance of a single randomly
chosen channel is reported for brevity. Although
the error performance is input data dependent, on
average, the RTL implementation benefits from
the fused datapath methodology and achieves a
statistically equal or higher precision than the
standard IEEE 754 single-precision
implementation as demonstrated by comparing
the Frobenius Norm in columns (4) and (5) of
Table 3. We use the Frobenius Norm to get a
measure of the overall error magnitude in the
resultant vector and is given by:

‖-‖. � �∑ |0	|12	�3

Where N is the size of the vector, e is the
difference vector between observed x and its
MATLAB generated golden reference, and i is the
index of the elements in vector e. The maximum
normalized error is given by:

max	 �7��	_89: �	_&;<�/�	_&;<7�

5. Conclusions
In this paper, we evaluated a new approach to

implementation of floating-point DSP algorithms
on FPGAs using Altera’s DSP Builder Advanced
Blockset design flow. This design flow
incorporates the Altera DSP Builder Advanced
Blockset, Altera’s Quartus II software tool chain,
and ModelSim simulator, as well as MATLAB and
Simulink from MathWorks. This approach allows
the designer to work at the algorithmic behavioral
level in the Simulink environment. The tool chain
combines and integrates the algorithm modeling
and simulation, RTL generation, synthesis, place
and route, and design verification stages within the
Simulink environment. This integration enables
quick development and rapid design space
exploration both at the algorithmic level and at the
FPGA level, and ultimately reduces overall design
effort. Once the algorithm is modeled and
debugged at a high level, the design can be
synthesized, and targeted to an Altera FPGA.

 For the purpose of this evaluation, the design
examples were single-precision complex-data
IEEE 754 floating-point Cholesky and QR solvers
modeled in Simulink using the Altera DSP Builder
Advanced Blockset. The largest design example
we evaluated was a QR solver for a complex-
valued floating-point matrix of size 400×400 and a
vector size of 100. Running at 203 MHz this
example processes 162 GFLOPS. The reported
GFLOPS values in Table 2 are for the actual

E
x
a
m
p
le

Device

Configuration
(Reported Channel Number /

Matrix Size/
Vector Size)

MathWorks Simulink
IEEE 754

Floating-Point
Single-Precision Error
(Frobenius Norm /Maximum

Normalized Error)

Altera’s DSP Builder
Synthesized RTL
Floating-Point

Single-Precision Error
(With Fused Datapath

Methodology)
(Frobenius Norm /

Maximum Normalized Error)

C
h
o
le
sk
y Stratix

V

1 / 360×360 / 90 2.11e-6 / 1.02e-4 1.16e-6 / 8.58e-5
7 / 60×60 / 60 4.24e-7 / 8.59e-6 1.82e-7 / 2.62e-6
53 / 30×30 / 30 7.48e-8 / 2.08e-6 3.84e-8 / 1.15e-6

Arria V
3 / 90×90 / 45 4.08e-7 / 9.72e-6 1.99e-7 / 5.52e-6
63 / 30×30 / 30 8.93e-8 / 2.38e-6 5.91e-8 / 1.24e-6

Q
R

Stratix
V

1 / 400×400 / 100 4.53e-6 / 1.45e-4 5.15e-6 / 1.03e-4
1 / 200×100 / 100 1.24e-6 / 1.13e-5 9.97e-7 / 8.15e-6
1 / 200×100 / 50 8.38e-7 / 6.70e-6 8.97e-7 / 4.15e-6
1 / 100×50 / 50 9.13e-7 / 4.68e-6 6.96e-7 / 4.94e-6

Arria V
1 / 200×100 / 50 9.27e-7 / 2.33e-5 9.31e-7 / 9.95e-6
1 / 100×50 / 50 9.13e-7 / 4.68e-6 6.96e-7 / 4.94e-6

Table 3 Error performance of the Simulink model and the synthesized RTL compared to the

MATLAB double-precision floating-point reference

© 2012 Berkeley Design Technology, Inc. Page 14

implementation of the Cholesky solver and the
QR solver algorithms in floating-point complex-
data format on the two FPGAs. For a valid
comparison with other competing platforms, the
same algorithms should be implemented on these
platforms and their performance measured. All
reported performance results were achieved using
the Altera DSP Builder Advanced Blockset tool
flow with no hand optimization or floor planning.
Starting from a high-level block-based design in
Simulink, the tool chain automatically pipelined,
generated the RTL code and synthesized the
design to achieve usable speeds and resource
utilization. The Altera floating-point design flow
simplifies the process of implementing complex
floating-point DSP algorithms on an FPGA by
streamlining the tools under a single platform.
With its fused datapath methodology, complex
floating-point datapaths are implemented with
higher performance and efficiency than previously
possible.

The new approach analyzed in this paper also
entails a significant learning curve for using the
DSP Builder Advanced Blockset. This is especially
true for a designer not familiar with MATLAB
and Simulink. The block-based design-entry
approach may present an initial challenge for a
traditional hardware designer. In addition, in order
to exploit the advantages offered by the block-
based design approach over hand-written RTL,
additional steps are required by the designer when
creating the Simulink model. For example, to
enable experimentation with different matrix and
vector sizes, as is done in the two design examples
in this paper, the Simulink model was structured
to incorporate a parameter-driven design to
explore the various design configurations.

Currently, designers using the DSP Builder
Advanced Blockset must limit themselves to the
elements provided by the blockset in order to
achieve optimized performance. Elements from
the standard DSP Builder Blockset are not
optimized with the floating-point compiler nor
can they be mixed with the Advanced Blockset at
the same hierarchy level. Hand-coded HDL
blocks may only be imported into the Standard
Blockset. Additionally, the DSP Builder Advanced
Blockset is geared towards DSP implementations
and may have limited use for designs involving
heavy control and state machines.

The next version of the DSP Builder
Advanced Blockset, expected to be released by the
end of 2012, will include floating-point extensions.

The designer will no longer be limited to the two
standard IEEE 754 single-precision and double-
precision formats, but will have the choice of a
total of seven different precisions ranging from 16
to 64 bits (exponent plus mantissa). Using the new
Enhanced Precision Support block in the DSP Builder
Advanced Blockset, the designer may choose the
data-width that best fits their application.

6. References
[1] Berkeley Design Technology, Inc., 2011. “An
Independent Analysis of Altera’s FPGA Floating-
point DSP Design Flow”. Available for download
at http://www.altera.com/literature/wp/wp-
01166-bdti-altera-floating-point-dsp.pdf.

[2] S.S. Demirsoy, M. Langhammer, 2009. “Fused
datapath floating point implementation of
Cholesky decomposition.” FPGA ’09, February,
2009.

