Selecting Processors for Video Applications

ESC-324

Jeff Bier
Berkeley Design Technology, Inc.
Berkeley, California USA
+1 (510) 665-1600
info@BDTI.com
http://www.BDTI.com

Outline

Motivation and scope
Selection criteria and methodology
Benchmarking options
Processor architecture options
Conclusions

© 2007 Berkeley Design Technology, Inc.
Selecting Processors for Video Applications

Motivation

Digital video applications are multiplying
- New types of video-centric products; e.g., Slingbox
- Analog to digital migration; e.g., surveillance
- Video as a “feature”; e.g., cell phone, sewing machine

The right processor is key to product success
- Enables desired product features
- Heavily influences product cost, power consumption, performance (end user experience)
- Can ease or worsen development effort, cost, and risk

Range of processor options is large and rapidly changing, making selection difficult

Scope

Processor selection for video products with varying features:
- Cost- and/or energy-constrained
- Input/output quality varies by application
 - E.g., lower quality video for cell phone, high quality video for set-top box
- Using streaming or stored content
- Based on off-the-shelf or custom algorithms
Selecting Processors for Video Applications

Processor Selection Challenges

The fundamental problem:
- Many processors, types to choose from
- Complex processors
- Complex, diverse applications
- Multiple standards to support
- Many important selection criteria to consider
- Unpredictable changes in processor options, application requirements
- Poor information, complex analysis
- Limited time and resources for selection

The wrong choice can be fatal for a product development effort.

Video Processor Types

<table>
<thead>
<tr>
<th>Processor Type</th>
<th>Chips</th>
<th>IP Cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC CPU</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Embedded RISC CPU</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Application processor</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>DSP (generic or specialized)</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Media processor</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Heterogeneous multiprocessor</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Customizable processor</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>ASIP</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Reconfigurable processor</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>FPGA</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Fixed-function engine</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>ASSP (incorporating one or more processor types)</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Massively parallel multi-core embedded processors</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Selecting Processors for Video Applications

Outline

Motivation and scope
Selection criteria and methodology
Benchmarking options
Processor architecture options
Conclusions

Processor Selection Criteria
The Big Picture

• Performance considerations
 • Critical because video applications are computationally demanding
• Cost, on-chip integration
 • Requirements for video applications (I/O, for instance) can be quite different from requirements for other applications
• Availability and roadmap
 • Important for managing risk
• Development considerations
 • Especially critical for consumer video products because of the intense time-to-market pressures
• Other considerations
 • Packaging options to meet size constraints, etc.
Selecting Processors for Video Applications

Processor Selection Criteria
Performance Considerations

Performance on relevant tasks
• Speed
• Numeric fidelity
 • Data word size(s)
• Execution-time predictability
 • Dynamic features confound determinism
• Energy consumption
 • Affected by off-chip memory accesses, etc.
• Memory
 • Memory bandwidth provided: on-chip, off-chip
 • External memory performance required
 • Memory usage efficiency

Performance Requirements

Audio: less demanding
• MP3, WMA, ...
• Sample rate conversion, equalization
• Higher precision (>16 bits)
• Low throughput

Video: more demanding
• MPEG-2, MPEG-4, H.264, WMV9, DivX, …
• Deinterlacing, scaling
• Lower precision (≤16 bits)
• High throughput
Selecting Processors for Video Applications

Cost and Integration

Cost of chip
On-chip integration
 • Host processor
 • Memory
 • Peripherals
 • I/O interfaces
Packaging options
 • Package sizes, types
 • Temperature ranges

On-chip Integration Considerations

I/O Requirements

Support for multiple I/O interface types and standards
 • Basic in-system serial and parallel
 • e.g. ITU 656, I²S, SPI, host port
 • Memory Interfaces
 • e.g. glueless DDR DRAM, ATA, flash
 • External connectivity
 • e.g. Ethernet, USB, FireWire
Support for high transfer rates
 • Video data rates range from 100’s to 1000’s KB/s
Support for autonomous, intelligent I/O
 • E.g., programmable communications coprocessors reduce load on core processor
Selecting Processors for Video Applications

Processor Selection Criteria
Availability and Roadmap Considerations

Risk for your current design
- Availability; reliability of supply
 - Multi-vendor architectures a plus
 - What does the errata list look like?

Roadmap – risk for your future designs
- Vendor commitment to evolving the chip, e.g., improved integration, reduced cost
- Roadmap for next-generation architectures
- Compatibility of future parts
- What is your confidence that the vendor will execute on its roadmap?

Processor Selection Criteria
Development Considerations

Programming model complexity
- Single- vs. multi-core
 - Heterogeneous vs. homogeneous
- Instruction set architecture
- Microarchitecture

Developer familiarity

Compatibility
Tools (vendor, third party)
- Support for software optimization, including assembly language
- Accurate profiling: multiple levels, multiple metrics
 - E.g., visibility into buses, caches, pipeline
- Debug/development benefit from tools with:
 - Peripheral and multi-processor simulation
 - Non-intrusive, real-time debug
- Compilers: Languages supported; efficiency
Other Development Considerations
Software, Reference Designs

Off-the-shelf software availability
- External and internal
- Vendor and third-party
- Software reference designs
- Video processing components
 - E.g., codecs, post-processing blocks
- Video kernels
- Device drivers and other general-purpose software
- Operating systems

Hardware reference designs

Processor Selection Methodology

Use a hierarchical approach to make the problem manageable:
- Determine selection criteria
- Prioritize or assign weights to selection criteria
- Use critical criteria to eliminate obviously unsuitable choices
 - Begin with classes of processors
- Evaluate and rank candidates
- Weigh trade-offs among non-critical criteria
- Iterate and refine as necessary
 - Refine criteria
 - Refine analysis of candidates
Selecting Processors for Video Applications

Outline

Motivation and scope
Selection criteria and methodology
Benchmarking options
Processor architecture options
Conclusions

Benchmarking Options

<table>
<thead>
<tr>
<th>Applications</th>
<th>Portable video player</th>
<th>Video conf. system</th>
<th>Surveillance system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Components</td>
<td>OS</td>
<td>Video decoder</td>
<td>Video encoder</td>
</tr>
<tr>
<td>Algorithm Kernels</td>
<td>Motion Estimation</td>
<td>FFT</td>
<td>Deblocking</td>
</tr>
<tr>
<td>Operations</td>
<td>Add</td>
<td>Multi/MAC</td>
<td>Shift</td>
</tr>
</tbody>
</table>
Avoiding the Extremes

- Operation-level benchmarks
 - e.g. MIPS (millions of instructions/sec) and MFLOPS (millions of floating-point operations/sec)
 - Easy to measure...
 - ...but “instructions” and “operations” are poorly defined, making the results useless

SC1400 single instruction:
mac d12,d8,d0 mac d13,d8,d1 mac d14,d8,d2
mac d15,d8,d3 move.4f(r2)+,d12:d13:d14:d15
move.4f (r0)~,d8:d9:d10:d11
ARM11 single instruction:
ADD tmp, dinc, #3*NumOfPoints

- Full-application benchmarks
 - Can have very accurate results...
 - ...but they are impractical to implement

Algorithm Kernel Benchmarks

Approximate the application workload
- Computationally intensive portions of signal processing apps: DCT, image resize, etc.
- Strong predictors of performance
 - But do not measure system-level performance or OS overhead
- Modest programming effort
- Results for common kernels widely available

Reasonably general
- One kernel set may be applicable across a range of applications
- Difficult to apply to multi-core processors, hardware accelerators, FPGAs, etc.

Example: BDTI Video Kernel Benchmarks
Selecting Processors for Video Applications

Application Component Benchmarks

Model a key video processing task

- Often representative of overall workload
- Easier to implement than a full application
- Less general than a set of kernel benchmarks

Larger workload vs. kernel benchmarks

- Allows comparison of broader range of architectures
- Simplifies programming rules
- May be harder to implement than a set of kernel benchmarks

Can benchmark the entire system

- Capture effects of memory size, bandwidth, etc.
- Does not capture effects of combining multiple tasks

Modeling a Video Decoder

Example Application Component Benchmark

Key goals:

- Represent the application workload
- Standardize the workload
- Simplify implementation
- Represent real application development approaches

[Diagram of the BDTI Video Decoder Benchmark]
Evaluating Off-the-Shelf Solutions
Example: BDTI Solution Certification of H.264 Video Decoder

ARC Video Subsystem
H.264 Baseline Profile, D1 resolution, 30 fps, 1.5 Mbps
Processing Engine Utilization for Real-Time operation
with varying frame delay buffers

External Memory Access Time (ns)

Minimum Solution Clock Rate Required for
Real-Time Operation (MHz)

0 buffers
1 buffer
2 buffers
3 buffers
Average

Outline
Motivation and scope
Selection criteria and methodology
Benchmarking options
Processor architecture options
Conclusions
Selecting Processors for Video Applications

Video Processor Types

<table>
<thead>
<tr>
<th>Processor Type</th>
<th>Chips</th>
<th>IP Cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC CPU</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Embedded RISC CPU</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Application processor</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DSP (generic or specialized)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Media processor</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Heterogeneous multiprocessor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customizable processor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reconfigurable processor</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>FPGA</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Fixed-function engine</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>ASSP (incorporating one or more processor types)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Massively parallel multi-core embedded processors</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Example Application Processor
NXP PNX4103

Two cores:
- 208 MHz ARM9E
- 350 MHz 5-issue VLIW
- TM3270 media processor

Accelerators for pre-, post-processing
- TM3270 performance for video (BDTI-certified benchmark results):
 - BDTI Decoder, 30 fps
 - QVGA: ~67 MHz
 - D1: ~290 MHz
 - BDTI Encoder, 30 fps
 - QVGA: ~175 MHz

Price not disclosed
Selecting Processors for Video Applications

PNX4103 Video Processing Benchmark Results

Processor utilization results are peak figures. PNX4103 Benchmarks run on the TM3270, a 350 MHz, 5-issue VLIW core.

Application Processors
Strengths and Weaknesses

• Performance considerations
 • Adequate performance for portable video
 • But typically less powerful than other types of processors
 • Emphasis on energy efficiency
 • 32-bit GPP core is a good target for non-media tasks
 • E.g. TCP/IP stack, user interface

• On-chip integration
 • High level of integration

• Usually offered only to very high volume customers
Application Processors
Strengths and Weaknesses (Continued)

- Development considerations
 - Programming model may be simple or complex
 - Good tools, but generally weak on support for video application development
 - Programmability + tools = Flexibility
 - Sometimes very good third-party OS, software component support
 - Compatibility good with respect to ARM CPU core
 - But generally use proprietary video processing hardware

Example Media Processor
Texas Instruments TMS320DM6446

Two cores:
- 300 MHz ARM9E
- 600 MHz 8-issue VLIW DSP core
Accelerators for video encoding
BDTiMark2000™ score: 6590
(C64x+ only)
Maximum performance:
(Uncertified results)
- H.264 MP encode and decode
 - D1: @ 30 fps
- MPEG-4 SP encode and decode:
 - 720p @ 30 fps
Price $35, qty 10k
Media Processors
Strengths and Weaknesses

• Performance considerations
 - Higher performance than most DSPs, GPPs
 - High-performance peripherals, coprocessors
 - Application performance often very compiler-dependent
 - Compilers sometimes weak

• Availability and roadmap
 - Maturing technology, but roadmaps sometimes unclear

• Development, other considerations
 - Development cost, risk, lower than ASIC, FPGA
 - Balance between cost, energy efficiency and flexibility
 - More flexible than fixed-function hardware
 - More cost- and energy-efficient than most DSPs, GPPs
 - Programming models changing
 - Software provided, made accessible through API calls
 - Semi-programmable coprocessors
 - Better support for video processing in development tools, infrastructure,
 compared to GPPs, typical DSPs
 - Off-the-shelf software support can be strong

Example FPGA
Altera Stratix II EP2S15

Includes specialized fixed-function blocks:
- Multipliers
- PLLs
- Memory blocks
- High-speed I/O

Supports Nios II RISC “soft core”
Performance for video:
(Uncertified results)
Real-time MPEG-2 decode (1080p @ 30 fps): 133 MHz
- Requires ~65% of device
Price $35, qty 10k
FPGAs
Strengths and Weaknesses

• Performance considerations
 • Massive performance gains over instruction set processors on some video tasks
 • Huge throughput, cost/performance gains over processors in some applications
 • Architectural flexibility can yield efficiency
 • Suitability for single-channel, low-power, cost-sensitive applications not proven

• On-chip integration
 • Support for many electrical interface standards
 • Provide higher memory, I/O bandwidth than DSPs, GPPs, etc.
 • Flexible on-chip integration
 • But may have to roll your own

• Development, other considerations
 • High development effort compared to instruction-set processors
 • Can incorporate “hard” or “soft” processors, replace DSP-FPGA combination
 • Scalability with fewer design/development paradigm changes, compared to DSPs, GPPs, etc.
 • Greater “family breadth” (viz. throughput, price range) compared to processor families
 • Expanding array of IP libraries (video decoder blocks, etc.), reference designs

Example ASSP
Broadcom BCM7312

Targets set-top boxes for digital satellite TV

Fixed-function hardware:
 • MPEG-2 video decode (D1 @ 30 fps) (Uncertified results)
 • Audio decoding
 • 2D graphics

Includes 266 MHz MIPS32 core

On-chip integration
 • Video, audio DACs
 • USB, GPIO, PC, SPI

Application-specific integration
 • RF tuner and demodulator
 • Satellite descramblers
 • Access control hardware

Support for third-party OSs, tool chains

Price not provided
ASSPs
Strengths and Weaknesses

• Performance considerations
 • Performance typically very well matched to the targeted application
 • SoCs with extensive integration
 • Typically paired with extensive application-specific software
 • Architecture tuned for the application
 • Can yield excellent performance, cost, energy efficiency

• Availability and roadmap
 • Roadmap often unclear

• Development, other considerations
 • Ease of use
 • Reduced system development costs
 • Reduced required implementation expertise
 • Often inflexible
 • Limited differentiation opportunities for system designer

Outline

Motivation and scope
Selection criteria and methodology
Benchmarking options
Processor architecture options
Conclusions
Selecting Processors for Video Applications

Trends

Market
- Growing markets attract new competitors
- Not all processors are well-suited for video
- Diverse applications have diverse requirements

Technology
- Technology, competition push performance up; price and power consumption down
 - Enabling new products, new functionality
- Algorithms becoming more demanding
- Applications becoming more complex
- Convergence is happening – at the system and chip levels
- Chips are becoming more complex
 - Many heterogeneous multiprocessors
 - Integration increasing

Development trends
- Development infrastructure becoming increasingly important
 - Support for video applications
 - Off-the-shelf software

Conclusions

Choosing the best processor is difficult
- Fast-changing requirements and options
- Vast range of options
- Many complex, competing criteria to consider
- Poor information
- Limited time and resources

Use a hierarchical approach
- Develop a well-defined hierarchy of product requirements
- Start with the critical criteria and iteratively narrow the field
- Expect to make trade-offs

Assessing performance is a challenge
- Be an informed consumer of benchmark results
Example Video Processor Vendors

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4i2i</td>
<td>Video IP cores</td>
</tr>
<tr>
<td>Agere Systems</td>
<td>DSPs</td>
</tr>
<tr>
<td>Altera</td>
<td>FPGAs, Hardcopy ASICs</td>
</tr>
<tr>
<td>Ambric</td>
<td>Massively-parallel processors</td>
</tr>
<tr>
<td>Analog Devices</td>
<td>Media processors, DSPs</td>
</tr>
<tr>
<td>ARC</td>
<td>Configurable CPU/DSP cores, platforms</td>
</tr>
<tr>
<td>ARM</td>
<td>General-purpose CPU cores</td>
</tr>
<tr>
<td>Broadcom</td>
<td>ASSPs</td>
</tr>
<tr>
<td>Ceva</td>
<td>DSP cores, subsystems</td>
</tr>
<tr>
<td>Chips & Media</td>
<td>Video IP cores, ASSPs</td>
</tr>
<tr>
<td>Freescale</td>
<td>Media processors, Application processors</td>
</tr>
<tr>
<td>Hantro</td>
<td>Hardwired video codecs</td>
</tr>
<tr>
<td>Imagination Tech.</td>
<td>Video IP cores</td>
</tr>
<tr>
<td>Intel</td>
<td>CPUs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSI Logic</td>
<td>ASSPs</td>
</tr>
<tr>
<td>MIPS</td>
<td>General-purpose CPU cores</td>
</tr>
<tr>
<td>Mobilic</td>
<td>Media processors</td>
</tr>
<tr>
<td>NXP Semiconductors</td>
<td>Media processors, Application processors</td>
</tr>
<tr>
<td>PixSil Technology</td>
<td>Media processors, Video IP soft cores</td>
</tr>
<tr>
<td>Samsung Semiconductor</td>
<td>ASSPs</td>
</tr>
<tr>
<td>Sandbridge Technologies</td>
<td>Multi-core DSPs</td>
</tr>
<tr>
<td>Sarnoff</td>
<td>Video IP cores</td>
</tr>
<tr>
<td>Siano Mobile Silicon</td>
<td>ASSPs</td>
</tr>
<tr>
<td>STMicroelectronics</td>
<td>ASSPs</td>
</tr>
<tr>
<td>Telegent Systems</td>
<td>Application processors</td>
</tr>
<tr>
<td>Tensilica</td>
<td>Configurable CPU/DSP cores, subsystems</td>
</tr>
<tr>
<td>Texas Instruments</td>
<td>Media processors, DSPs, Application processors</td>
</tr>
</tbody>
</table>
Selecting Processors for Video Applications

Example Video Processor Vendors

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Videantis</td>
<td>Video IP cores</td>
</tr>
<tr>
<td>Xilinx</td>
<td>FPGAs</td>
</tr>
<tr>
<td>Zoran</td>
<td>ASSPs</td>
</tr>
</tbody>
</table>

For More Information...
www.BDTI.com

Inside [DSP] newsletter and website
Benchmark scores for dozens of processors
Pocket Guide to Processors for DSP
 • Basic stats on over 40 processors
Articles, white papers, and presentation slides
 • Processor architectures and performance
 • Video applications
 • Video software development
comp.dsp FAQ