Presentation Goals

Understand key strengths and weaknesses of...
- High-end DSPs
- High-end general-purpose processors
- Signal-processing-oriented FPGAs
- Reconfigurable processors

...for signal processing in SDR applications

Understand how the options perform
- Speed
- Cost and cost-effectiveness
- Power and energy-efficiency
Programmable Signal Processing Options

DSPs
General-purpose processors (GPPs)
- PC CPUs
- Embedded GPPs
Reconfigurable architectures
- FPGAs
- Reconfigurable processors

DSPs: The Incumbents

Modern conventional DSPs introduced ~1986
- One instruction, one MAC per cycle
- Developed primarily for telecom applications

High-performance VLIW DSPs introduced ~1997
- Primarily targeted telecom infrastructure
- Speed focused:
 - Independent execution units support many instructions, operations per cycle
 - Deeper pipelines and simpler instruction sets support higher clock rates
- Emphasis on compilability
Freescale MSC711x and MSC81xx

6-issue, 16-bit fixed-point VLIW architecture
- Up to four 16-bit MACs per cycle
- Mixed-width 16- and 32-bit instruction set
Mainly targeting telecom infrastructure, wireless handsets
Example parts:
- Single-core MSC7110 shipping at 200 MHz, $13 (1 ku)
- Quad-core MSC8122 sampling at 400 MHz, $171 (1 ku)

Other High-Performance DSPs

Texas Instruments TMS320C64x
- 8-issue, 16-bit fixed-point architecture
 - Up to four 16-bit MACs per cycle
 - Special instructions and co-processors for communications apps.
 - Compatible with ‘C62x, ‘C67x
Example parts:
- ‘C6414T shipping at 1.0 GHz, $214 (1 ku)
- ‘C6410 shipping at 400 MHz, $20 (1 ku)

Analog Devices TigerSHARC (ADSP-TS20x)
- 4-issue fixed- and floating-point
 - Up to eight 16-bit fixed-point MACs per cycle
 - Special instructions for 3G base stations
 - High memory bandwidth (18 GB/s)
Example parts:
- ‘TS201S shipping at 600 MHz, $242 (1 ku)
- ‘TS203S shipping at 500 MHz, $55 (1 ku)
DSP Processors
Strengths and Weaknesses

† Signal processing performance and efficiency strong vs. other types of instruction-set processors
↓ But may not be adequate for demanding tasks
 ↓ Fixed architectures limit efficiency, algorithm flexibility
† Strong signal-processing-oriented tools and infrastructure
 ↓ Sometimes, poor compiler quality
† Stable, mature technology and vendors
† Relatively low development cost, risk
↓ Relatively limited selection of chips for some families
 † But chips offer strong, relevant integration

PC CPUs
High-Performance General-Purpose Processors (GPPs)

Not originally designed for signal processing, but offer:
• Very high clock rates
• Ability to execute several instructions in parallel
• Large on-chip memories on some parts
Extensive SIMD features speed signal processing
• Intel's MMX, SSE, SSE2, and SSE3
• Freescale's Altivec
Mostly speed-focused
• Energy efficiency usually poor
• Fastest parts are very expensive
Strong emphasis on backwards compatibility
Freescale MPC7xxx

High-End PowerPC

- MPC7457 shipping at 1 GHz, \sim250 (1 ku)
 - 320 Kbyte on-chip cache memory
 - 20 Watt max power
- MPC7410 shipping at 400 MHz, \sim50 (1 ku)
 - 64 Kbyte on-chip cache memory
 - 6.6 Watt max power

Extensive SIMD support
- Fixed-point: 16x8, 8x16, 4x32, 1x128
- Floating-point: 4x32

MPC74xx probably faster than any floating-point DSP
- Likely faster than most fixed-point DSPs

PC CPUs

Strengths and Weaknesses

† Can handle substantial real-time signal-processing tasks
 † May be as fast or faster than DSP processors ...
 ↓ ... but cost and power consumption may be higher
↓ Dynamic features complicate optimization, real-time
↓ Generally weak on integration
† Excellent targets for non-signal-processing tasks
 † E.g., packet protocol stacks
† Many options for OS, 3rd party application software
† Development tools mature, powerful
 ↓ But typically lack signal-processing-oriented features
† Compatibility, multi-vendor architectures common
↓ Short life cycle for many parts
FPGAs
Field-Programmable Gate Arrays

An amorphous “sea” of reconfigurable logic with reconfigurable interconnect
- Possibly interspersed with fixed-logic resources, e.g., processors, multipliers
Potential for very high parallelism
Historically used for prototyping and “glue logic,” but now increasingly for signal processing
- DSP-oriented architecture features
- DSP-oriented tools and design libraries
 - Viterbi, Turbo, and Reed-Solomon coders and decoders, FIR filters, FFTs,…

Key DSP players: Altera and Xilinx

Altera Stratix

Up to 22 hard-wired “DSP blocks”
- 8×9-bit, 4×18-bit, 1×36-bit multiply operations
- Optional pipelining, accumulation, etc.
Three sizes of hard-wired memory blocks
All announced family members are shipping now; e.g.,
- 10 Kcell version: $120 (1 ku)
- 60 Kcell version: $1,215 (1 ku)
Other High-End DSP-Oriented FPGAs

Altera Stratix II
• New logic structure uses novel 8-input logic
• Faster, less expensive, and higher capacity
• Most parts sampling now
 • 15 Kcell version: $120 (1 ku)
 • 60 Kcell version: $490 (1 ku)

Xilinx Virtex-4: three application-oriented “platforms”
• “SX” emphasizes DSP blocks, hardwired memory
 • DSP blocks consist of 18x18 multipliers plus hardware for accumulation and other operations
• “LX” emphasizes logic cells
• “FX” includes PowerPC cores
• Initial parts sampling now; 1 ku prices unavailable

FPGAs
Strengths and Weaknesses

↑ Massive performance gains over instruction set processors on some DSP tasks
 ↑ Huge throughput, cost/performance advantages over DSP, general-purpose processors in some applications
 ↑ Architectural flexibility can yield efficiency
 ↑ Adjust data widths throughout algorithm
 ↑ Parallelism where you need it; distributed storage
 • Dynamic reconfigurability?
↓ High development effort compared to instruction-set processors
 ↓ Complex design flow is unfamiliar to most signal-processing engineers
 • Suitability for single-channel, low-power, cost-sensitive signal-processing applications not proven
Reconfigurable Processors

Finally Ready for Prime Time?

Goal: FPGA-like flexibility, ASIC-like efficiency, DSP processor-like programmability

Key idea: Coarse-grained reconfigurability vs. FPGA
 - Pay for reconfigurability where it benefits the most

Typically an array of connected processing elements

Distributed memory provides massive bandwidth

Most are application-focused
 - 3G infrastructure is the most common target

Fabless IC and core-licensing business models

Examples: Elixent, Morpho Tech, PACT, picoChip, Stretch

BDTI Communications Benchmark™

A multi-channel 10 Mbps OFDM receiver

<table>
<thead>
<tr>
<th></th>
<th>DSP A</th>
<th>DSP B</th>
<th>Altera Stratix 1S20-6</th>
<th>Altera Stratix 1S80-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channels</td>
<td><0.2</td>
<td>~0.7</td>
<td>~20</td>
<td>~60</td>
</tr>
<tr>
<td>Cost (1 ku)</td>
<td>~$15</td>
<td>~$210</td>
<td>~$210</td>
<td>~$3,200</td>
</tr>
<tr>
<td>Cost per channel</td>
<td>~$90</td>
<td>~$300</td>
<td>~$10</td>
<td>~$50</td>
</tr>
</tbody>
</table>

From BDTI’s report **FPGAs for DSP** and unpublished benchmarks.
Reconfigurable Processors

Strengths and Weaknesses

† Potential for exceptional throughput and efficiency
 † Combination of massive parallelism and application-specific hardware
 † Reconfigurable processor is to FPGA as DSP is to GPP
† Potential for excellent flexibility
 ▼ Novel programming models
 ▼ Programming models, tools immature
 † Application focus helps; e.g., software libraries, reference designs
 ▼ But for some, the application is an afterthought
▼ Unproven technology, companies
 ▼ Uncertain company, technology roadmaps

Conclusions

The good news:
• An increasingly rich field of options for high-performance, programmable signal processing
• Consistent improvement in performance, cost, energy
• SDR is possible!

The bad news:
• Nothing available today is close to an ideal solution
• The landscape is changing fast
• Difficult to make good comparisons among diverse, fast-changing options
Future Work

Further independent processor benchmarking for SDR applications is needed
• More devices: FPGAs and DSPs
• More processor types: PC CPUs and reconfigurable processors
• More metrics: energy efficiency

Additional analysis needed
• Performance isn’t everything—factors such as ease of development are also critical

BDTI is pursuing new benchmarking and analysis in each of these areas

For More Information...
www.BDTI.com

Inside [DSP] newsletter and quarterly reports
Benchmark scores for dozens of processors
Pocket Guide to Processors for DSP
• Basic stats on over 40 processors
Articles, white papers, and presentation slides
• Processor architectures and performance
• Signal processing applications
• Signal processing software optimization
comp.dsp FAQ