Processor Selection Challenges

- The fundamental problem:
 - Lots of options—many types of processors available
 - Complex processors
 - E.g., heterogeneous multiprocessors
 - Complex applications
 - E.g., multiple standards to be supported
 - Demanding applications
 - Speed, cost, energy efficiency
 - Application requirements, processor options change quickly
 - Many important selection criteria to consider
 - Poor information
 - Complex analysis required...
 - But limited time and resources available

- The wrong choice can be fatal for a product development effort
Processor Selection Methodology

Use a hierarchical approach to make the problem manageable:

- Select appropriate categories (e.g., chip vs. core)
- Determine selection criteria
- Prioritize and assign weights to selection criteria
- Use critical criteria to eliminate unsuitable choices
 - Begin with classes of processors
- Evaluate and rank remaining candidates
- Weigh trade-offs among non-critical criteria
- Iterate as necessary
 - Refine criteria and analysis of candidates

Processor Selection Criteria

Key Quantitative Factors

- Speed
 - Can the processor do the job?
 - How slow a clock rate can I use?
- Bill-of-materials cost
 - Processor cost
 - Supporting component cost
 - Integration: memory, peripherals, I/O interfaces, ...
 - Memory usage
 - Royalties
- Energy consumption
Assessing Application Speed

- Use relevant application or module speed data
 - More accurate than kernel benchmark mapping—if appropriate data is available
 - Use caution—data may be misleading or incomplete
- Augment with kernel benchmark results
 - Combined with application profile data
 - Useful when application data isn’t available
 - Use kernel benchmark results to predict application module performance
- Use care with either approach...
 - Hazards include, e.g., data types, precision

Assessing Speed, continued

- Processor core speed alone isn’t enough
 - Must also consider memory sizes and bandwidths
 - I/O bandwidths and overheads
 - Multitasking effects
 - Impact of inter-processor synchronization and communication in multi-processor systems
 - Must define software architecture to predict performance
- Dynamic features complicate speed prediction
- Assessing energy efficiency can be very difficult
Processor Selection Criteria

Development Factors

- Development effort, cost, risk
 - Breadth and quality of video-oriented tools, infrastructure
 - Application software components, OSs, drivers, players
 - Reference designs
 - Design services, support
 - Programming model complexity, familiarity
 - Language support
 - Pre-integrated subsystems
 - Start-up (“switching”) costs
 - Compatibility; multi-vendor architecture
- Flexibility
- Roadmap risk

Video Processor Types

<table>
<thead>
<tr>
<th>Processor Type</th>
<th>Chips?</th>
<th>IP?</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC CPU</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>RISC CPU</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DSP (generic or specialized)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Media processor, heterogeneous multiprocessor</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Customizable processor</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ASIP</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Reconfigurable processor</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FPGA</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fixed-function engines</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ASSP (incorporating one or more processor types)</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Example ASSP

Micronas MDE9500

- High-integration digital TV receiver
- Analog decode, DVB decryption, decode
- On-chip MPEG-2 video decoder (D1, 30 fps)
- Interfaces to other chips for, e.g., PVR functionality
- Customizable via software
 - MIPS-compatible CPU
 - Supports DVB-MHB
 - Supports Java
- Price $15-$30, qty 10k

ASSPs

Strengths and Weaknesses

▲ Ease of use
 ▲ Reduced system development costs
 ▲ Reduced required implementation expertise

▲ Often very well matched to the application
 ▲ Architecture tuned for the application
 ▲ SoCs with extensive integration
 ▲ Can yield excellent performance, cost, energy efficiency

▼ Often inflexible
▼ Limited differentiation opportunities for system designer
▼ Usually single-source
▼ Roadmap often unclear
Example Media Processor

Philips PNX1500

- General-purpose 300 MHz five-way VLIW
- Media-specific interfaces, co-processors, instructions
- On-chip L1 data, instruction caches, and L2 data cache
- C/C++ programming model
- MPEG-4 decode (simple profile, CIF, 30 fps): 45 MHz
- MPEG-4 D1 video + audio encoding in real time
- Price <$20, qty >100k

Media Processors

Strengths and Weaknesses

- Higher performance than most DSPs, GPPs
 - VLIW, huge register sets, wide SIMD typical
 - High performance peripherals, co-processors
- Very complex programming models
- Better support for media processing in development tools and infrastructure, compared to GPPs
- Application performance compiler-dependent
 - Compilers can be poor quality
- Maturing technology—but roadmaps unclear
 - 3rd party support weaker than other processor types
- Development cost, risk, lower than ASIC, FPGA
Example DSP Processor

Analog Devices ADSP-BF533

- 600 MHz, 16-bit fixed-point DSP with dual MAC units
 - 750 MHz also available
- Integrated peripherals target media apps (e.g., CCIR-656 port, I²S ports)
- Good 3rd party software component support
- MPEG-4 decode, simple profile, CIF: 168 MHz
- ADSP-BF53x BDTImark2000™ score: 3,360 @ 600 MHz
- Price $16, qty 10k

DSP Processors

Strengths and Weaknesses

- Performance, efficiency on media applications strong compared to GPPs
- But not as strong as customized solutions, and may not be adequate for demanding tasks
- Media-oriented development tools, infrastructure
- Overall tools not as sophisticated as those available for general-purpose processors
 - Often, poor compiler quality
- Third-party audio/video application software available
 - Support for non-DSP software not as strong as, e.g., RISC
- Mature technology
- Relatively low development cost, risk
Example Embedded RISC CPU

Intel PXA255

- 400 MHz, 32-bit RISC with modest DSP extensions
- 16-bit SIMD, 32-bit data types benefit media apps
- Predicated instruction execution good for control
- MPEG-4 decode (simple profile, CIF @ 30 fps) 200 MHz
- BDTImark2000™ score: 930
- Good development tool support; optimized DSP software available (e.g., Intel IPP); good OS options
- Price $35, qty 10k

Embedded RISC CPUs

Strengths and Weaknesses

- Can have adequate performance on media applications
 - Often less efficient than DSPs and media processors
- Dynamic features complicate programming
 - Complicates optimization and ensuring real-time
- Sometimes, convoluted programming model
- 32-bit GPPs are more natural targets for non-media tasks
 - E.g., TCP/IP network stacks
- Multi-vendor architectures more common
- Good tools overall, but generally weak on support for media application development
- Very good third-party OS, software component support
- Compatibility more common
- High integration parts increasingly common
Example FPGA

Altera Stratix EP1S20

- Diverse on-chip hardware:
 - ~1.6 Mbits RAM
 - 18,460 logic elements
 - 80 embedded multipliers
 - 10 DSP blocks
 - 6 PLLs, 586 I/O pins
- Specialized high-speed I/O support
 - HyperTransport, PCI-X, SDRAM
- MPEG-2 HD decode
 - 4:2:0 at 108 MHz
 - 4:2:2 at 133 MHz
- Price $66 in qty 10k
 - ~65% cost reduction with "Hardcopy" structured ASIC port

FPGAs

Strengths and Weaknesses

- **Massive performance gains on some algorithms**
- **~50X throughput, cost/performance advantage over DSP/GPP processors in some applications**
- **Architectural flexibility can yield efficiency**
 - Adjust data widths throughout algorithm
 - Parallelism where you need it; distributed storage
- **Re-use hardware for diverse tasks**
- **Slow time-to-market compared to, e.g., DSPs, GPPs**
 - Cumbersome design flow is unfamiliar to most signal-processing engineers
 - Proprietary architectures
- **Suitability for single-channel, low-power, cost-sensitive signal-processing applications unclear**
Conclusions

- Lots of options, changing rapidly!
- Use a hierarchical approach
 - Develop a well-defined hierarchy of requirements
 - Start with the critical criteria and iteratively narrow the field
 - Expect to make trade-offs
- Assessing performance is a challenge
 - Resource-hungry algorithms, cost-constrained processors, many variables
- Appropriate integration is essential to low system cost
- Development-related considerations are key

For More Information...

www.BDTI.com

Inside [DSP] newsletter and quarterly reports
Benchmark scores for dozens of processors
Pocket Guide to Processors for DSP
 - Basic stats on over 40 processors
Articles, white papers, and presentation slides
 - Processor architectures and performance
 - Signal processing applications
 - Signal processing software optimization
comp.dsp FAQ