Introduction

• Key markets and motives
• Processor options and trends

General-purpose processors (GPPs), software dominate
• PCs taking over the studio
• Software is king for consumer audio

Audio signal processing becoming ubiquitous
• Consequences of convergence

Higher volumes and the benefits of competition

Connectivity becomes a key challenge

Conclusions
Key Realities and Consequences

Realities:
- Audio processing needs becoming easier to meet
- Audio signal processing becoming quite inexpensive
- Applications evolving quickly
- Algorithms changing fast

Consequences:
- Programmable solutions win favor
- Audio processing becoming ubiquitous
 - Consumer audio dominates
 - Few special-purpose chips for pro audio
- Higher volumes
 - Increased competition, lower costs, faster innovation
- Connectivity becomes a (the?) key challenge

Key Markets and Motives

1. Pro audio (recording, post-production, performance, ...)
 - Support more formats, features, effects
 - Improve productivity, reduce cost
 - Ease of use, flexibility, quality

2. “Convenience” consumer audio (mobile phone MP3 player, ...)
 - Basic audio support as a differentiator
 - Maximize convenience, but not necessarily audio quality
 - Combine with non-audio features
 - Minimize cost, time to market, engineering effort
 - Maximize flexibility

3. “Quality” consumer audio (home theater, ...)
 - Differentiate via audio features
 - High quality
 - Maximize flexibility
Audio Signal Processing Hardware Trends

Flexibility vs. Efficiency

- **General-Purpose:** GUI, OS, etc.
- **Portable:** MP3, WMA, etc.
- **Networking:** TCP/IP, RTSP, etc.
- **Telecom:** Echo cancel, G.729, etc.
- **Studio:** Mixing, effects, etc.
- **“Component” ASSP:**
- **“SoC” ASSP:**
- **ASIC:**
- **DSP:**
- **GPP:**
- **PC:**
- **Theater:** DTS, SDDS, etc.
- **Home Theater:** AC-3, DTS, etc.

 Sources: Digital Audio Codecs, ARM Ltd. 2001 and BDTI estimates

Audio Processing Gets Easier

MP3 Decoder Processing Load
(Stereo, 48 kHz, 320 kbps)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>% of Max Processor Speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

© 2003 Berkeley Design Technology, Inc.
Plenty of Headroom

Processing Load: 200 MHz ARM9E

MP3 Stereo Decode
Processor Speed % of Max
5
10
15
20
25
Source: Digital Audio Codecs, ARM Ltd. 2001

MP3 Stereo Encode
WMA8 Stereo Decode
AC-3 5.1-Ch Decode

General-Purpose Processors, Software Ascendant

“How I really need a shrimp peeler?”
PCs, CPUs Taking Over the Studio

As audio gets easier, less need for special hardware
- PC CPUs offer strong signal-processing performance
- Leverage PC performance increases, volume
- DSPs less important; little vendor focus
- Fewer custom processors

But PCs are not ideal for recording, performance
- “Blue screen of death” is unacceptable
- Latency is a problem
- Sound engineer's job doesn't necessarily become easier

Key consequences
- Studio gets cheaper, smaller
- More software, less hardware
- More machine, less man
- A new set of IT-like hassles for users

GPPs Rule “Convenience” Audio

Processors are cheap; why use special hardware?
Convergence drives GPP preference
- GPPs already present/preferred for other functionality
- System designers differentiate via non-audio features

Compression and numeric considerations favor GPPs
GPPs often encapsulated in an ASSP
- Stable, high-volume → “system-on-a-chip”
 - DANGER: New technology can upset stable applications
- ASSPs often contain multiple cores, accelerators, ...
- ASSP vs. “generic” processor boundary is blurring

Key drawback: dynamic features can cause problems
Software Is King Everywhere

DSPs thrive in “quality” consumer audio
- Insufficient volume, stability to justify ASSPs or ASICs
- Differentiation achieved via custom algorithms
 - Need strong support for custom audio software development
 - Off-the-shelf implementations of required algorithms preferred

ASICs become less relevant
- ASIC design takes years; markets change in months
- Huge volumes needed to cover design, mask costs
 - Can one manufacturer sell 1-2 MM units?
 - Possible solution: the 486SX approach
 - Design chip for high-end apps; disable features for low-end apps
 - Transistors are cheap!

Audio Signal Processing Becoming Ubiquitous

“Everywhere there’s a pair of ears, there’s an opportunity for digital audio.”
Convergence: More Than Buzzword

Faster processors enable inexpensive combination of audio capabilities with other functions
• Added to devices like phones, PDAs, and digital still cameras
• Enabling new products like A/V jukeboxes and media servers

“Personal content” changes everything
• Access audio anytime, anywhere, any way
• Content freed from hardware
• System model becomes more distributed, more complex
 • Transfer to portable device
 • Stream from content provider
 • Stream between devices

Consequences of Convergence

Algorithms, applications changing more rapidly
• Converged devices amplify instability problems
 • Example: unstable audio standards + unstable wireless standards
• Shift from mature to immature technology
 • Less predictability in evolution of the system
• Product design workload shifting to chip vendors

Conflicting system design goals
• Instability → flexible solutions (GPPs, DSPs, PC CPUs)
• High complexity → highly integrated, off-the-shelf solutions (ASSPs)
• Low prices → specialized solutions (ASICs, ASSPs)
What About “Quality” Audio?

High-end home theater and automotive audio applications
Moderate volumes → poor targets for ASSPs and ASICs
No graphical UI, OS, network stack, ... → less need for GPPs
Tough algorithms → DSP strengths
 • Algorithms require much more power than those in “convenience” audio → DSP strengths
 • Quiet environments → no fans → low power → DSP strength
 • Differentiation in custom algorithms → DSP tools strengths
 • Preference toward floating-point → DSP market position strength

Higher Volumes and the Benefits of Competition

“Faster, better, and cheaper?”
Lower Costs, Faster Innovation

Costs driven down, innovation accelerated due to volume and competition
- Inexpensive hardware, widely available software
 - Enable convergence of technologies
 - Enable acceptable prices
 - Enable easier entry into some markets
- Bigger, wider markets attract attention
 - Easier to get consumers interested
 - Easier to attract investment
- But litigation, regulation, and poor business models slow things down
 - Compression algorithm licensing structure is unwieldy
 - Legislation, industry back-room deals hinder innovation
 - Effective business models are essential but elusive

Connectivity Becomes a Key Challenge

“It’s not what you know, it’s who you know.”
Expanding Options in Pro Audio...

Many new options
- Riding the coat-tails of existing data standards like 1394, Ethernet, and ATM
- New standards and proprietary options
- Digital connections extend all the way to the mic!

Higher capacity
- Support new standards with higher data rates
- Fewer wires

Point-to-point wiring → audio networks
- Physical setup → virtual setup
- Solutions like mLAN key for managing the mess

...And in Consumer Audio

Connectivity trends mirror pro audio
- Many options
- Higher capacities
- Networked audio

Many issues remain unresolved
- Network topology is changing
 - Today: PC plays central role
 - Tomorrow: ???
- Network setup is too difficult for consumers
 - Device discovery and control not solved
 - Digital rights management not solved

Home theater systems gain connections to other digital audio devices, PCs, and content providers
A New Set of Headaches

New options solve some problems, but introduce others

- Fewer wires, but more layers to worry about
- Connectivity processing becomes increasingly important
 - Sample rate conversion
 - Example: 44.1 kHz → 48 kHz
 - Transcoding
 - Example: AAC → MP3
 - Encryption and digital rights management
 - Example: WMA9 source encryption → 5C network encryption

Where is all this decoding and decryption done?

Resolving the confusion is crucial to many products

- Connectivity is crucial for personal-content model

Conclusions

“May you live in interesting times.”
Conclusions

- We’re entering a new era of ubiquitous digital audio!
 - Convergence is real and growing
 - Personal content will be a key driver
- Emphasis shifting from specialized hardware to software
 - PCs will dominate the studio... like it or not
 - Embedded GPPs will dominate convergence products
 - DSPs will thrive in some niches
- Connectivity enables new capabilities, but brings new challenges
 - Processor-based ASSPs help address integration challenges
- The “ecosystem” is all-important
 - A player without a content source is like a train without tracks
 - Business models and rights management present critical unsolved problems

For More Information...

www.BDTI.com

- DSP Insider newsletter
- Pocket Guide to Processors for DSP
- White papers on processor architectures and benchmarking
- Audio compression algorithm implementation processor resource-use data
- BDTImark2000™ benchmark scores
- Article reprints on DSP-oriented processors and applications
- comp.dsp FAQ