Trends and Performance in Processors for Digital Signal Processing

Outline

- Signal processing hardware trends: the big picture
- Processor trends
- Performance analysis
  - Comparing benchmarking approaches
  - Benchmark results for the latest processors
    - ‘C64xx, SC140, ‘C55xx, ‘BF53x, OMAP, PXA2xx
  - How architecture affects benchmark results
  - Emerging challenges
- Conclusions
Trends and Performance in Processors for Digital Signal Processing

Outline

- **Signal processing hardware trends: the big picture**
- Processor trends
- Performance analysis
  - Comparing benchmarking approaches
  - Benchmark results for the latest processors
    - 'C64xx, SC140, 'C55xx, 'BF53x, OMAP, PXA2xx
  - How architecture affects benchmark results
  - Emerging challenges
- Conclusions

Processor Options Multiply

Today’s system designers have a wealth of options for implementing DSP tasks:

- DSP processors
- GPPs
- Media processors
- ASSPs
- ASICs
  - Customizable cores
- FPGAs

Heterogeneous architectures increasingly common
Flexibility vs. Suitability

General-Purpose: GUI, OS, etc.

Customizable Core

App-Specific DSP

DSP

GPP

DSL

802.11b

MP3

VoIP

GSM

Cable Modem

ASSP

ASIC

Flexibility vs. Suitability

Outline

- Signal processing hardware trends: the big picture
- Processor trends
  - Performance analysis
    - Comparing benchmarking approaches
    - Benchmark results for the latest processors
      - ‘C64xx, SC140, ‘C55xx, ‘BF53x, OMAP, PXA2xx
    - How architecture affects benchmark results
    - Emerging challenges
- Conclusions
More Options... and Fewer

More speed across the board → more options
- Many processors adding signal processing capabilities
  - E.g., ARMv6 ISA includes video-oriented instructions
  - Processors stealing work from dedicated hardware
    - E.g., ‘C64x can handle broadcast-quality H.264 decoding

But consolidation is happening
- Faster mainstream architectures reduce need for specialized architectures
- Weak markets kill niche players
- Barriers to entry rising
  - Availability of tools, software, and programmers often crucial

Processor Trends: Integration

Increasing integration
- More peripherals and on-chip memory
- More-powerful peripherals
- Multi-processor chips
  - Also: coprocessors
  - Multi-chip packaging

On-chip memory system increasingly important
- More-complex applications require more memory
- Memory speeds increase much more slowly than processor speeds
- Suitability of the memory architecture to the application is critical
Trends: Development Support

- Applications are becoming more complex
  - Multimedia cellular phone vs. MP3 player
- Processors are becoming more complex
- Algorithms are becoming more demanding
  - And more changeable
- Optimization continues to be essential
- Huge processor-to-processor differences in development infrastructure
  - Off-the-shelf, optimized software components increasingly important
  - Software frameworks emerging

Processor Trends: Architecture

- VLIW (multi-issue) to increase performance
- SIMD to increase performance
- Simplified instruction sets, architectures to increase clock speeds, compilability
  - More complex instruction sets for higher performance
- Mixed-width instruction sets to reduce memory usage
- Deeper pipelines to enable higher clock speeds
- DSP-enhanced general-purpose processors
- Compatibility
Architecture Trends: The Down Side

• VLIW (multi-issue), SIMD, and deep pipelines can increase:
  • Memory use
  • Energy consumption
  • Code-generation complexity, programming difficulty
• Simple instruction sets often increase memory usage
  • More instructions are needed to accomplish a given task
• Complex instruction sets hinder compilability
• Compatibility can bring messy compromises

Each processor makes different tradeoffs, depending on its target application—top speed is often not the goal!

Outline

• Signal processing hardware trends: the big picture
• Processor trends
• Performance analysis
  • Comparing benchmarking approaches
  • Benchmark results for the latest processors
    • ’C64xx, SC140, ’C55xx, ’BF53x, OMAP, PXA2xx
  • How architecture affects benchmark results
  • Emerging challenges
• Conclusions
How to Benchmark?

A few candidate approaches:

- Simplified metrics
  - E.g., MIPS (Millions of Instructions Per Second), MOPS, MMACS

- Full DSP applications
  - E.g., v.90 modem

- DSP algorithm “kernel” benchmarks
  - E.g., FIR filter, FFT

Algorithm Kernel Benchmarks

The BDTI Benchmarks are based on DSP algorithm kernels

- The most computationally intensive portions of DSP applications
- Examples include FFTs, IIR filters, and Viterbi decoders

Benchmark results are used with application profiling to predict overall performance
Algorithm Kernel Benchmarks

Advantages:
- Relevant; chosen by analysis of real DSP apps
- Kernels are short, allowing
  - Functionality to be precisely specified
  - Benchmarks to be implemented, optimized in a reasonable amount of time

Disadvantages:
- Not practical to implement all important algorithms
- Don’t reflect application-level optimizations and trade-offs
- Ignores system-level considerations

Outline

- Signal processing hardware trends: the big picture
- Processor trends
  - Performance analysis
    - Comparing benchmarking approaches
    - Benchmark results for the latest processors
      - ‘C64xx, SC140, ‘C55xx, ‘BF53x, OMAP, PXA2xx
    - How architecture affects benchmark results
  - Emerging challenges
- Conclusions
Benchmark Results for the Latest Processors

High-performance processors
- Texas Instruments TMS320C64xx
- StarCore SC140

Low-power processors
- Texas Instruments TMS320C55xx
- Analog Devices Blackfin (ADSP-BF53x)

General-purpose/DSP processors
- Intel PXA2xx
- Texas Instruments OMAP5910

Overall DSP Speed: BDTI mark2000™

Higher is faster

(See www.BDTI.com for more scores)
What Factors Affect DSP Speed?

Processors’ DSP speeds are affected by:
- Parallelism
  - How many parallel operations can be executed per cycle
- Instruction set
  - Suitability for the task at hand
- Clock speed
- Data types
- Data bandwidth
- Pipeline depth
  - Instruction latencies
- Support for DSP-oriented features, e.g.,
  - DSP addressing modes
  - Zero-overhead looping
  - Saturation, scaling, rounding

Memory Use: BDTI Control Benchmark

<table>
<thead>
<tr>
<th></th>
<th>TI 'C55xx (8/16/32/48)</th>
<th>ADI 'BF53x (16/32/64)</th>
<th>TI 'C64xx (32)</th>
<th>StarCore SC140 (16/32)</th>
<th>Intel PXA2xx (16/32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes</td>
<td>146</td>
<td>140</td>
<td>256</td>
<td>144</td>
<td>140</td>
</tr>
</tbody>
</table>

Lower is better
What Factors Affect Memory Use?

Processors’ memory usage affected by:
- Instruction set
  - Wider instructions take more memory
  - Mixed-width instruction sets becoming popular
    - Use short, simple instructions for simple tasks
    - Use longer instructions for more complex tasks
  - Suitability of instruction set for task at hand
- Architecture
  - VLIW, SIMD, and deep pipelines all may encourage (or require) optimizations that increase memory use to obtain speed-optimized code
- Compiler quality (for compiled code)

Energy Efficiency:
BDTI mark2000/ mW

Higher is better

<table>
<thead>
<tr>
<th>Processor</th>
<th>Frequency</th>
<th>Voltage</th>
<th>Energy Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>TI 'C55xx</td>
<td>300 MHz</td>
<td>1.26V</td>
<td>11.8 mW</td>
</tr>
<tr>
<td>ADI 'BF53x</td>
<td>600 MHz</td>
<td>1.2V</td>
<td>16.9 mW</td>
</tr>
<tr>
<td>TI 'C64xx</td>
<td>300 MHz</td>
<td>1.0V</td>
<td>16.1 mW</td>
</tr>
<tr>
<td>Motorola MSC8101</td>
<td>300 MHz</td>
<td>1.5V</td>
<td>13.7 mW</td>
</tr>
<tr>
<td>Intel PXA2xx</td>
<td>200 MHz</td>
<td>1.0V</td>
<td>2.6 mW (estimated)</td>
</tr>
</tbody>
</table>
What Factors Affect Energy Efficiency?

Processors’ energy consumption affected by:

- Speed
- Hardware implementation
  - Fabrication process, voltage, circuit design, logic design
- Memory usage
- Compiler quality (for compiled code)

Cost-Perf: BDTI mark2000/ $

<table>
<thead>
<tr>
<th>Processor</th>
<th>Frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TI 'C55xx</td>
<td>300 MHz,</td>
<td>$10</td>
</tr>
<tr>
<td></td>
<td>$45</td>
<td></td>
</tr>
<tr>
<td>TI 'C64xx</td>
<td>500 MHz,</td>
<td>$45</td>
</tr>
<tr>
<td></td>
<td>$118</td>
<td></td>
</tr>
<tr>
<td>Motorola MSC8101 (SC140)</td>
<td>300 MHz,</td>
<td>$29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$25.6</td>
</tr>
<tr>
<td>Intel PXA2xx</td>
<td>300 MHz,</td>
<td>$27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What Factors Affect Cost-Perf?

**Speed**

Chip cost, which is affected by:
- Die size
  - Fabrication process
  - Size of on-chip memory
    - Influenced by processor’s memory usage
  - On-chip peripherals
  - Manufacturing volume

Good cost-performance results don’t necessarily mean chip is suitable for apps with severe cost constraints
- Users don’t want to pay for more performance than needed

Texas Instruments TMS320C64xx

Targets high-performance DSP applications.

Goals:
- Fast
- Compilable
- Compatible with earlier ‘C62xx

Sacrifices:
- High memory consumption
- High chip price for fastest ($199, qty 10K)
- Difficult to program in assembly language
‘C64xx is Fast Because…

Highly parallel architecture
- Based on ‘C62xx: VLIW, up to 8 instructions/cycle
- Adds SIMD to ‘C62xx
  - Compatible with ‘C62xx
  - Faster
  - More powerful instructions
  - Four 16-bit MACs/cycle

Very high clock speed (720 MHz)
- Deep pipeline (11 stages)
- Most instructions are simple
  - 32-bit, mostly RISC-like
  - Also increases compilability
- Cache

But ‘C64xx Makes Sacrifices

- High memory use
  - Wide, uniform-width (32-bit) instructions
  - Mostly simple, RISC-like instructions
  - VLIW, SIMD, deep pipeline
- Memory use increases chip/system cost
- Deep pipeline also complicates code generation
  - Multi-cycle latencies
StarCore SC140

Targets high-performance DSP applications.

Goals:
- Fast
- Low memory usage
- Easy to program in assembly
- Compilable
- Low energy consumption

Sacrifices:
- Not as fast as ‘C64xx
- High chip price (300 MHz MSC8101 is $118, qty 10K)
- No compatibility with previous architectures

SC140 Fast, But Not Fastest

Like ‘C64xx, highly parallel architecture
- VLIW, up to 6 instructions/cycle
  - Like ‘C64xx, four 16-bit MACs/cycle
  - Limited SIMD

Mid-range clock speed (300 MHz)
- About half as high as ‘C64xx
- Shallow pipeline (5 stages)
  - Not deep enough for ultrahigh clock speed
  - But uniform single-cycle latencies ease code generation, decrease memory use
- Simple instruction set

Higher is Faster

© 2003 Berkeley Design Technology, Inc.
**SC140 Has Surprisingly Low Memory Use**

- Mixed-width instruction set
  - 16-bit instructions with optional 16-bit prefixes
  - Surprising, since it’s VLIW

![Memory Use on Control Benchmark](image)

*Lower is Better*

**Texas Instruments TMS320C55xx**

Targets low-power, cost-sensitive DSP applications.

**Goals:**
- Low energy consumption
- Low memory use
- Low chip cost
- Midrange speed
- Partly compatible with earlier 'C54xx architecture

**Sacrifices:**
- Not nearly as fast as high-end DSPs
- Not very compilable
- Difficult to program in assembly
‘C55xx Focuses on Power, Cost, Compatibility... Not Speed

- Moderate parallelism
  - Adds limited (2-issue) VLIW capabilities to boost speed while maintaining partial compatibility with ‘C54xx
    - Two MACs/cycle
    - Convoluted architecture (like ‘C54xx)
- Moderate clock speed (300 MHz)
  - 7-stage pipeline
  - Single-cycle latencies
- Moderate price ($8-20 qty 10K)

Analog Devices ADSP-BF53x

Targets low-power, cost-sensitive DSP applications.

Goals:
  - Low energy consumption
  - Low memory use
  - Low chip cost
  - Midrange speed
  - Compilable

Sacrifices:
  - Not nearly as fast as high-end DSPs
  - No compatibility with previous architectures
ADSP-BF53x Balances Power, Cost, Speed

- Moderate parallelism
  - 3-issue VLIW
  - Two MACs per cycle
  - Somewhat more parallelism than ‘C55xx; not nearly as much as SC140 or ‘C64xx
  - Not constrained by legacy architecture
- High clock speed (600 MHz)
  - 10-stage pipeline
  - Single-cycle latencies
- Good energy efficiency
- Moderate price
  ($6-35 qty 10K)

‘BF53x and ‘C55xx Both Have Low Memory Usage

- Both use mixed-width instruction sets
  - ‘BF53x uses 16/32/64-bit instructions
  - ‘C55xx uses instructions ranging from 8-48 bits
- ‘BF53x instructions (and architecture) are fairly simple
  - ‘BF53x is easy to program in assembly, good compiler target
- ‘C55xx inherits ‘C54xx instruction set
  - Not as easy to program in assembly as ‘BF53x, but familiar to ‘C54xx programmers
  - Not a good compiler target
  - Results for compiled code would likely favor ‘BF53x
'BF53x vs. 'C55xx Energy Efficiency

- 'BF53x supports multiple voltages
  - Good energy efficiency at top speed of 600 MHz/1.2V
  - Energy results at other speed/voltage combos will vary
- 'C55xx supports one voltage

BDTImark2000/mW
Higher is Better

<table>
<thead>
<tr>
<th></th>
<th>'C55xx</th>
<th>'BF53x</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 MHz</td>
<td>11.8</td>
<td>16.9</td>
</tr>
<tr>
<td>1.26V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intel PXA2xx (XScale)

Targets low-power, cost-sensitive DSP applications where general-purpose processing features or software are needed.

Goals:
- Low memory use
- Low chip cost
- Midrange speed
- Compatible with earlier ARM architectures
- Support for operating systems, compilers

Sacrifices:
- Not very efficient for DSP
- Poor energy and cost efficiency
• Relatively low level of parallelism
  • Single-issue, mostly general-purpose 32-bit architecture
  • Good compiler target
  • ARM architecture augmented with limited SIMD
  • Two MACs/cycle
  • Few additional DSP-specific features

• Moderately high clock speed (400 MHz)
  • 7-stage pipeline
  • Multi-cycle latencies

• Medium-high price
  ($27-42 qty 10K)

PXA2xx is Efficient in Memory

• Not surprising; general-purpose architecture is a good match for control code
• Mixed-width (16/32) instruction set
• Probably would look even better if benchmark showed compiled code results
PXA2xx Can’t Compete With DSPs on Energy, Cost

- Not very efficient on DSP algorithms
- High clock rate helps boost speed, but doesn’t help with energy or chip cost
  - This is often a drawback of GPPs for DSP

<table>
<thead>
<tr>
<th></th>
<th>BDTImark2000/mW</th>
<th>BDTImark2000/$</th>
</tr>
</thead>
<tbody>
<tr>
<td>'C55xx</td>
<td>11.8</td>
<td>146</td>
</tr>
<tr>
<td>'BF53x</td>
<td>16.9</td>
<td>376</td>
</tr>
<tr>
<td>'C64xx</td>
<td>16.1</td>
<td>98</td>
</tr>
<tr>
<td>SCI140</td>
<td>13.7</td>
<td>29</td>
</tr>
<tr>
<td>PXA2xx</td>
<td>2.6 (est.)</td>
<td>26</td>
</tr>
</tbody>
</table>

TI OMAP (‘C55xx plus ARM9)

Targets low-power, cost-sensitive DSP applications where general-purpose processing features or software are needed.

Goals:
- Low energy consumption
- Low memory use
- Low chip cost
- Midrange speed
- Support for operating systems, compilers
- Compatibility with ‘C54xx, ARM

Sacrifices:
- ‘C55xx not very compilable
- Dual-core approach complicates system development
OMAP BDTI mark2000 Score??

OMAP5910 BDTImark2000 score could range from 186 (ARM only) to 916 (ARM plus C55xx)… depending on application partitioning

Outline

• Signal processing hardware trends: the big picture
• Processor trends
  • Performance analysis
    • Comparing benchmarking approaches
    • Benchmark results for the latest processors
      • 'C64xx, SC140, 'C55xx, 'BF53x, OMAP, PXA2xx
    • How architecture affects benchmark results
  • Emerging challenges
• Conclusions
Emerging Benchmarking Challenges

New technologies create performance-analysis challenges
- Multi-core devices
- DSP-enhanced FPGAs
- Application-specific processors
- Customizable processors
- Reconfigurable processors

Evolving applications and tools also lead to new challenges
- Increasing reliance on C compilers

Application Benchmarking

- For technologies not well served by kernel benchmarks, such as
  - FPGAs
  - Application-specific processors
- Limited applicability
- Practicality concerns can be partly addressed by
  - Using off-the-shelf implementations where available, or
  - Using simplified applications
    - E.g., BDTI's OFDM benchmark—simplified telecom receiver
**Outline**

- Signal processing hardware trends: the big picture
- Processor trends
- Performance analysis
  - Comparing benchmarking approaches
  - Benchmark results for the latest processors
    - 'C64xx, SC140, 'C55xx, 'BF53x, OMAP, PXA2xx
  - How architecture affects benchmark results
  - Emerging challenges
- **Conclusions**

**Conclusions**

- DSP processor architecture innovation has accelerated greatly
- New processor types are increasingly competitive
  - DSP-enhanced general-purpose processors
  - Multiprocessor chips
  - Customizable cores
- Non-processor approaches are increasingly competitive
  - DSP-enhanced FPGAs
  - Architectural options are expanding
Conclusions

- Today’s DSP-oriented processors cannot be meaningfully compared using simplified metrics
  - Relevant, meaningful benchmark results are essential to processor evaluation
- There is no ideal processor
  - Fastest doesn’t mean best
    - The “best” processor depends on the details of the application
  - Different architectural approaches make different performance trade-offs
    - Understanding these is key to selecting a processor

For More Information...

www.BDTI.com

Free Information
- BDTImark2000™ scores
- DSP Insider newsletter
- Pocket Guide to Processors for DSP

White papers on processor architectures and benchmarking
Article reprints on DSP-oriented processors and applications
- EE Times
- IEEE Spectrum
- IEEE Computer and others
- comp.dsp FAQ