
picoChip PC102
Software Development Tools and Programming Model

© 2008 BDTI (www.BDTI.com). All rights reserved.

An Independent Evaluation of the

By the staff of

Contents
Introduction . 1

About BDTI . 1

Evaluation Methodology . 2

The picoChip PC102. 2

Implementing the FFT . 4

Tool Strengths and Weaknesses 7

Observations and Conclusions. 8

Introduction
picoChip sells high-performance multi-core chips for

wireless infrastructure applications. The company was
founded in 2000, and has been shipping chips since 2002. In
2004 picoChip introduced the PC102, which contains 308
programmable processors and 14 co-processors. The

PC102 and other picoChip products are programmed using
picoChip�s software development tool suite, called the �pic-
oTools,� which includes some tools that are similar to those
used in programming traditional DSPs and other types of
processors (such as a compiler, assembler, and simulator)
and some that are different�such as a specialized place-
and-route tool and a graphical design viewer.

BDTI recently completed an evaluation of the picoChip
tool chain using the PC102 chip, and this paper presents the
results of our evaluation.

About BDTI
Berkeley Design Technology, Inc. (BDTI) is widely rec-

ognized as a trusted source of independent analysis of pro-
cessing engines and tools targeting embedded applications.
BDTI uses its signal processing benchmark suites and in-
house expertise to evaluate the signal processing capabilities
of various processing engines, including DSP processors,
general-purpose processors, FPGAs, and multi-core
devices. BDTI also provides contract software develop-
ment services, and has completed numerous embedded

OVERVIEW

picoChip is a fabless semiconductor company that offers high-performance chips for computationally
demanding wireless infrastructure applications. picoChip’s chips contain hundreds of processors
connected in a MIMD (multiple instruction, multiple data) configuration.

One of the key challenges for massively parallel chip vendors like picoChip is that the software
development process for these chips tends to be significantly more complex than that used for single-
processor chips. To address this challenge, picoChip has developed a programming model and
associated tool suite that are intended to help reduce application implementation effort and complexity.

In this white paper, BDTI, an independent analysis company focused on digital signal processing (DSP)
technologies, evaluates the tools and design methodologies used to implement applications on a picoChip
chip, the PC102. We explore how well these tools and methodologies help mitigate the complexity of the
chip and allow the programmer to create robust, efficient application implementations.

Page 2 © 2008 BDTI (www.BDTI.com). All rights reserved.

software projects on a range of processing engines. For
further information see www.BDTI.com.

Evaluation Methodology
The most effective way to evaluate software develop-

ment tools is to use them. The key is to choose a test project
that is complex enough to exercise the tools in a realistic
manner, but not so complicated that it is prohibitively time-
consuming to implement. For this project, we chose to
implement an FFT (fast Fourier transform), because it is
computationally demanding and widely used in signal pro-
cessing applications, including those targeted by picoChip�s
PC102. BDTI has implemented variants of this algorithm
on dozens of different processing engines, and we�ve found
that although it is more complex than, for example, an FIR
filter, it is not overly time-consuming to implement, even on
a complex processor architecture.

BDTI began the picoChip tools evaluation project with
a strong background in developing signal processing appli-
cations for a wide variety of processing engines, but with no
direct experience using picoChip�s products or tools. Thus,
we were knowledgeable novices, as is likely to be true of
many of picoChip�s customers.

Our goal was to use the FFT as a test project for assess-
ing the picoChip tools and software development paradigm.
We were specifically interested in evaluating the following
characteristics:

� Conceptual complexity. How hard is it to understand
the picoChip multi-core architecture and associated
development methodology?

� Ease-of-use. Are the tools fairly straightforward and
robust?

� Quality/efficiency of implementation. Do the tools
enable programmers to create implementations that are
efficient (in terms of speed, power consumption, and
resource usage)? Are the debugging capabilities effec-
tive?

� Documentation. Is the documentation well orga-
nized, easy to read, and clear?

The process of implementing and testing the FFT on
the picoChip PC102 provided us with hands-on experience
with the chip�s tools and programming model, and allowed
us to assess most of the characteristics listed above.

There was, however, a drawback to our choice of a test
project. The FFT is relatively small and reasonably well
structured and, as such, does not allow us to explore how
difficult it is to partition a complex application across mul-
tiple processors in a picoChip device. For a massively paral-
lel chip like the PC102, this step will often constitute a key
part of the overall application development process. To help
address this challenge, picoChip provides implementations
of several communications applications. Some picoChip
customers will use these reference designs as-is; others will

use them with modifications; and others won�t use them at
all. The needs and experiences of these three groups are
going to be quite different.

To augment our analysis in the area of application parti-
tioning, we interviewed three system developers who have
developed complex applications (e.g., WiMax and wide-
band CDMA systems) on the PC102. We asked about their
experiences in using the PC102, and have included high-
lights from their responses in our evaluation.

The picoChip PC102
The PC102 is based on picoChip�s �picoArray� architec-

ture, which consists of many independent processors that
operate in a MIMD fashion. Each processor executes its
own instruction stream and processes its own data. The
number of processors included in the picoArray depends
on the specific chip. The PC102 contains a total of 308 pro-
cessors, which are called �AEs� (for �array elements�).

All of the processors in the PC102 are 16-bit, three-way
long instruction word (LIW) RISC processors with Harvard
memory architectures, and all have their own local memory.
On the PC102, there are three distinct processor types:
standard, memory, and control. The processor types vary in
their amount of local memory and computational resources.
Standard processors have a MAC unit and 768 bytes of
internal memory, and are intended for computationally
demanding signal processing. Memory processors exclude
the MAC unit but bump up the local memory to 8,704
bytes. These processors are intended for memory-intensive
portions of the application, such as buffering. The control
processors also exclude the MAC unit but have 65,536 bytes
of local memory. These processors are intended for control-
intensive portions of the application. A PC102 chip con-
tains 240 standard processors, 64 memory processors, and
4 control processors, reflecting the mixture of processing
that picoChip believes will be typical in its target applica-
tions. All three processor types use the same RISC instruc-
tion set, except that MAC instructions can only be executed
on standard processors. With the exception of loads and
branches, all instructions execute in a single cycle.

The processors� 64-bit LIW contains three execution
slots: one for ALU operations, one for load/store opera-
tions or a second ALU operation using a second ALU, and
one for branch or MAC operations. Using all three slots, up
to three operations can be executed in parallel in each cycle,
though there are limitations on the combinations that are
allowed. Each processor can only access its own internal
memory, and communicates with other processors using
input/output data ports. Processors are connected via 32-
bit �picoBuses� and programmable bus switches. The pico-
Bus connections between processors are defined (using a
subset of VHDL, called �picoVHDL�) at compile time, so
there is no real-time bus arbitration. Once a program is

© 2008 BDTI (www.BDTI.com). All rights reserved. Page 3

mapped to the processor array, program execution timing is
deterministic.

In addition to the processors described earlier, the
PC102 contains 14 application-specific co-processors that
are designed to accelerate common DSP/communications
tasks, such as Viterbi decoding. These co-processors were
not used during our tools evaluation.

Implementing Applications on the PC102
In general, implementing an application on the PC102

requires the following steps:
1. Partition the application into �sub-blocks,� each of

which will run on one (or sometimes more than one)
processor on the PC102. This is a manual process, and
requires the designer to functionally decompose the
application and map it to the picoChip processor array.
The functional decomposition will attempt to balance
the processing load across the array for optimal perfor-
mance, which is typically an iterative process as more
accurate estimates of individual processor performance
are obtained through the software development process.

2. Define the input/output bandwidth, data types, and bus
connections for the sub-blocks. This is accomplished
using a VHDL-like language called picoVHDL; the soft-
ware engineer creates a text file with lines of VHDL code
describing the interaction of sub-blocks.

3. Implement the software for each processor. Software
can be implemented in C, assembly code, or a combina-
tion of the two.

4. Simulate and debug the software on each processor.
5. Simulate the complete application to verify inter-proces-

sor communication.
6. Map software to specific processors on the chip. Up until

this point, the processors on the chip have been treated
as essentially interchangeable, but at this point their rela-
tive location is taken into account in an attempt to opti-
mize inter-processor communication and resource
allocation. (picoChip refers to this step as �place and
switch,� and it is conceptually similar to the place-and-
route step that is used with FPGAs). As we discuss
below, this step is done automatically by one of the tools
in the picoChip tool suite.

The implementation process is accomplished using pic-
oChip�s tool suite, called the �picoTools.� Tools in the suite
include:

� picoAnalyze: After the software engineer has defined
the bandwidth and data types for each of the sub-
blocks and has written the associated software (steps 3-
4 above) this tool checks the picoVHDL/ASM source
files for syntax errors. Files without errors are placed
into a library for further processing.

Processing Element

Inter-picoArray Interface or Asynchronous Data InterfaceI

P

P

P

P

P

P P P P

PPP P

PP

PPP P

PP P P

PP P P

PP P P

P

I
I

I

I

I PP P

P P

Switch Matrix

Processing Element

Inter-picoArray Interface or Asynchronous Data InterfaceIII

PPP

P

P

P

P

P P P P

PPP P

PP

PPP P

PP P P

PP P P

PP P P

P

I
I

I

I

I PP P

P P

PP

PP

PP

PP

PP PP PP PP

PPPPPP PP

PPPP

PPPPPP PP

PPPP PP PP

PPPP PP PP

PPPP PP PP

PP

I
II

II

II

II PPPP PP

PP PP

Switch Matrix

FIGURE 1. picoChip PC102 Key Architectural Features

Page 4 © 2008 BDTI (www.BDTI.com). All rights reserved.

� picoElaborate: This tool takes the library generated by
picoAnalyze and produces a text file with configuration
data for each processing element, including compiled
code memory images for instruction and data memory,
and configuration data for setting up interconnects. It
checks for syntax errors, and if none are found, it com-
piles and/or assembles the code.

� picoGcc: This is the picoChip C compiler. If a proces-
sor is programmed in C, picoElaborate will invoke
picoGcc to compile the C code.

� picoPartition: This tool maps the sub-blocks and their
connections to a specific device (e.g., the PC102).

� picoPlastic: The tool maps sub-blocks to specific pro-
cessors on the chip, and tries to optimize inter-proces-
sor communications and processor location (i.e.,
placing blocks in processors that are near needed
resources, such as I/O or peripherals). It is analogous
to the place-and-route tools used for FPGAs.

� picoDebugger: picoChip�s debugger includes a cycle-
accurate simulator, and can also be used with the hard-
ware. The design can be viewed using the �Design

Browser,� a separate graphical tool that shows a block
diagram representation of the full implementation. The
user can click on a block to drill down and view the
associated software.

A detailed view of the design process and point tools
used in the design of a picoChip PC102 application is given
in Figure 2.

The picoTools run on Linux and are not available for
Microsoft Windows. They can be invoked from the com-
mand line, or from a graphical front-end, called �picoDe-
veloper.�

Implementing the FFT
Now that we�ve introduced the basic software develop-

ment process and tools, we�ll describe our experiences
implementing the FFT on the PC102 following the process
outlined above.

Partitioning the Application
To run on the PC102, an application must be partitioned

into sub-blocks, each of which will run on a separate pro-

Develop an Initial
Partition

Write VHDL/C/ASM
Design Description

Run picoAnalyze

Run picoElaborate

Run picoPartition

Run picoDes2Sim

Run picoPlastic

Parallelize the PC102 application
for implementation on the
picoChip processing element array

C & ASM code is embedded in the
Architecture bodies of VHDL entities

.vhd files
VHDL analysis step for syntax checking

.lib files

.des files

VHDL elaboration step, including
C and ASM compilation and assembly

The main role of this picoPartition is
to distribute a design across multiple
PC102 devices, if required.

.seg, .tcl, .pdes files
Map design instances to processing
elements and configure inter-processing
element communications.

Create a file for simulation with
picoDebugger

Run picoDebugger Simulate, debug and verify the
PC102 design

Modify Code & Update
Application Partition to

Balance Loads and
Improve Performance

.seg, .tcl, .pdes files

Continue to hardware implementation,
debug and verification

picoTools
Design Step

Manual
Design Step

Develop an Initial
Partition

Write VHDL/C/ASM
Design Description

Run picoAnalyze

Run picoElaborate

Run picoPartition

Run picoDes2Sim

Run picoPlastic

Parallelize the PC102 application
for implementation on the
picoChip processing element array

C & ASM code is embedded in the
Architecture bodies of VHDL entities

.vhd files
VHDL analysis step for syntax checking

.lib files

.des files

VHDL elaboration step, including
C and ASM compilation and assembly

The main role of this picoPartition is
to distribute a design across multiple
PC102 devices, if required.

.seg, .tcl, .pdes files
Map design instances to processing
elements and configure inter-processing
element communications.

Create a file for simulation with
picoDebugger

Run picoDebugger Simulate, debug and verify the
PC102 design

Modify Code & Update
Application Partition to

Balance Loads and
Improve Performance

.seg, .tcl, .pdes files

Continue to hardware implementation,
debug and verification

picoTools
Design Step

Manual
Design Step

FIGURE 2. The Design Process for a picoChip PC102 Application

© 2008 BDTI (www.BDTI.com). All rights reserved. Page 5

cessor. Partitioning the application in this way is done man-
ually by breaking up the design into roughly balanced
computational loads based on estimates of the number of
cycles each sub-block will take to execute. In our example,
we developed a partition that separated the eight �passes�
of the FFT into eight sub-blocks; each pass being largely
independent of the others and suitable for in parallelization.

As part of the partitioning process, we needed to evalu-
ate which type of processor to use (i.e., the standard, mem-
ory, or control processor). We concluded that each pass
required a standard processor, because this is the only pro-
cessor that includes a MAC unit. We needed the MAC unit
for two reasons:
1. The FFT twiddle factors are multiplied by input data.
2. For the add/subtract operations used in a radix-2 butter-

fly, the accumulator in the MAC unit was used to provide
greater dynamic range than the 16 bits provided by gen-
eral purpose registers (A register pair could also have
been used to achieve the same dynamic range, but would
have required more cycles.).
Once we decided to use a standard processor for each

pass, we needed to design the data flow into and out of each
pass. With single-core DSPs, a frame of data stays in one
location in memory while being processed. For the PC102
implementation, however, the data needs to flow from one
processor to the next, because memory is not shared
between processors.

In order to keep the data flowing between processors,
we needed a �ping-pong� buffer to hold the frames. (For a
256-point FFT, the frame size is 256 complex data samples,
where each complex sample requires 4 bytes.) While one
frame was being processed, the other was being buffered.
When one frame finished, the two buffers would be
switched. We also needed memory to store the twiddle
table. As a result, the standard processor�s 256 bytes of
internal data memory were insufficient to meet the memory
requirements of each pass; we had to pair each standard
processor with a memory processor. Furthermore, we
needed an additional memory processor at the end of the
passes, to be used as output buffer.

Thus, the total number of processors used to implement
our FFT was 17 (out of 308)�two for each of the eight
passes, and one for the final buffering step. However, after
we implemented this version we determined that it would
have been possible to further optimize the implementation
to use 13 processors (six memory processors and seven
standard processors). Pass eight, the last pass, has no twid-
dle multiplication and therefore doesn�t need a standard
processor, so it could be implemented on a memory proces-
sor and merged with the output buffer. Furthermore,
because the memory requirements decrease by 50% for
each pass, passes six and seven could each be implemented
with a standard processor alone. Because we were primarily
interested in evaluating the tools rather than achieving max-

imum throughput, we did not implement this optimization.
It should also be noted that in a recent implementation of
the BDTI Communications Benchmark (OFDM)TM the
same FFT implemented using radix-4 butterflies was imple-
mented in 5 processors. The radix-4 implementation repre-
sents a more efficient solution and a better design choice for
this FFT on the picoChip PC102 than the radix-2 solution
used as the design example in this paper.

Overall, we found that partitioning our simple FFT
application required some thought but was fairly straight-
forward, though as noted above, we did discover later in the
process that we could have re-partitioned the application
more efficiently. We expect that, for applications that are
larger, more complex, and less regularly structured, the par-
titioning step is likely to be quite challenging, and will prob-
ably require multiple iterations to create efficient
implementations. Furthermore, for applications where key
parameters change over time (e.g., sampling rates), it will be
difficult to define a suitable partitioning scheme that doesn�t
leave much of the chip�s performance on the table.

As described earlier, we interviewed three developers
from different companies who have implemented complex
applications on the PC102, and asked them how difficult it
was to partition their application. Two of them started with
WiMax reference designs from picoChip and made modifi-
cations. For those two vendors, the partitioning scheme had
already been defined by the reference code, and they did not
have to perform this step themselves. The third developer
was developing a different kind of application, a multi-
antenna signal processing algorithm. This developer stated
that partitioning the application was a challenging part of
the application development process and consumed a sig-
nificant portion of his application development time.

Writing the Software
Having partitioned the FFT into sub-blocks and

mapped these sub-blocks to specific types of processors, we
began writing the software. The first step in this process is
to create a �structural instance� of each sub-block using
picoVHDL. PicoVHDL is a subset of the standard VHDL
language, augmented with several extensions by picoChip.
The structural instance defines the inputs and outputs (in
terms of bandwidth and data type) for each sub-block.

The processors on the PC102 can be programmed in C
or assembly language, or a combination of the two. As
described earlier, they are three-issue, long instruction word
(LIW) processors that use a RISC instruction set plus a
number of specialized instructions for DSP and communi-
cations applications, such as add or subtract with saturation,
arithmetic left or right shift with saturation, and bit reverse.
With the exception of memory accesses and branches, all
instructions have single-cycle latencies. This simplifies
assembly-level coding, debugging, and optimization, and
makes it relatively simple to ensure real-time behavior. The

Page 6 © 2008 BDTI (www.BDTI.com). All rights reserved.

MAC unit on the standard processors has two 40-bit accu-
mulators, but does not provide hardware support for frac-
tional multiplication, saturation, or rounding. These
capabilities are commonly required in signal processing
algorithms, and must be implemented in software on the
PC102.

To implement our FFT, we used primarily assembly
code. We found that, although picoChip�s C compiler
(picoGcc) generated reasonably well-optimized code,
assembly code was needed to pack the real and imaginary
components of the complex data into a single register (to
improve performance), and make use of specialized instruc-
tions such as bit-reversal. Using assembly code also made it
easier to predict cycle counts, which is useful for evaluating
performance and optimizing the code. Overall, we found
the individual processors easy to program, and our experi-
ence was echoed by the three vendors we interviewed.

In preparation for verifying the functionality of the
code, we generated intermediate fixed-point test vectors for
each of the eight passes using FFT reference C code execut-
ing on a PC. We then used picoVHDL to build a test bench
with file I/O. The input to the test bench was the input test
vector for the current pass; the output from the test bench
was verified against the corresponding output test vector.

As described earlier, we implemented each FFT pass
(which were similar, but not identical) with one standard
processor and one memory processor. The memory proces-
sor buffered the input data from the test bench and then
sent the data pairs and twiddle factors to the standard pro-
cessor. The standard processor computed the radix-2 but-

terfly and sent its output to the test bench, which wrote the
output to a file for verification against the test vectors.

Our performance target for the FFT was taken from the
definition of the BDTI Communications Benchmark
(OFDM)�, which requires a 256-point radix-2 butterfly to
finish in 32 cycles. Theoretically, this target could be
achieved fairly easily by using two or three LIW slots for
portions of the code. However, an added complication of
programming the PC102 when compared to programming
single-core processors is that provision must be included in
the code for data transfer between processing elements. For
the FFT, this meant that additional development effort was
required to write the code that managed and synchronized
data transfer between FFT stages. By careful scheduling of
operations in LIW instructions we were able to minimize
any performance overhead associated with data transfer and
synchronization. Once we had written the picoVHDL/
assembly software, we used the picoAnalyze tool to gener-
ate a library.

Mapping Software to Processors, Debugging.
After we ran picoAnalyze, we ran picoElaborate to gen-

erate the machine code for each instance. In addition to
compiling the code for each processing element, by using
the -write_statistics command line option, picoElaborate
generates a file that provides information on the configura-
tion of picoChip device resources used in the design. For
each resource, this information includes the type of
resource, memory usage, LIW and single instruction counts,
code size and density, and LIW instruction efficiency. An

Indicates that this
processing element
is programmed in

assembly

Design instance
name

Number of input
and output signals

at each possible rate

Processing
Element type

Instruction & data memory,
numbers of LIW and single

Instructions, LIW code density

Indicates that this
processing element
is programmed in

assembly

Design instance
name

Number of input
and output signals

at each possible rate

Processing
Element type

Instruction & data memory,
numbers of LIW and single

Instructions, LIW code density

DEVIO,dataSinkI,peripherals.dataSink,0,0,…,0,0,MEMBSI,#Nowhere#

ASM,re_fftI.genSoft.bitRev256I,fft.bitRev256,0,0,…,0,0,MEM2,512,8192,22,38,99,4.500000,1.727273

ASM,re_fftI.genSoft.pass7StanI,fft.pass7Stan,0,0,…,0,0,STAN2,512,256,22,39,109,4.954545,1.772727

…….

FIGURE 3. Statistics File Format Generated by PicoElaborate

© 2008 BDTI (www.BDTI.com). All rights reserved. Page 7

example of the statistics file for our design example is
shown in Figure 3. The next step in our design flow was to
run picoPartition. The real role of picoPartition is to parti-
tion a design across multiple picoChip devices. Since our
example uses only a single device, picoPartition simple allo-
cates instances to that device.

Finally, we used picoPlastic to place all specified proces-
sors onto the PC102 picoArray and to build the bus connec-
tions between them. Once this step is completed, the design
can be run and debugged in hardware. Unlike multi-
threaded programming models, program flow on the
PC102 is deterministic which simplifies the debugging pro-
cess. PicoPlastic generates an array display diagram that
provides a graphical display of how the design is imple-
mented on the device (Figure 4).

For our example, we ran picoAnalyze, picoElaborate,
picoPartition, and picoPlastic as command-line tools
included in a linux BASH script.

Tool Strengths and Weaknesses
We kept careful notes as we implemented the FFT, and

here we share our assessment of the strengths and weak-
nesses of the tools.

STRENGTHS:
� Installing the picoTools was easy. The toolset is down-

loaded as an RPM (�Red Hat Package Manager�) file,
and can be installed like any other RPM file. License

installation is also easy�at least for the evaluation
license we used. After the installation is finished, some
environmental variables need to be set up. Everything
is described in detail in the document, �System
Requirements and Installation Guide.�

� The toolset is robust. It crashed only once during our
two-month evaluation period. (We didn�t test it using
PC102 hardware, however.)

� The tools are quite fast. Building requires a couple of
minutes, and simulation was also very quick. We should
note, however, that because our test program was
small, the processing demands made on the tools were
relatively modest compared to what they would be for
complex applications that used more of the chip�s pro-
cessing array. According to picoChip, a full WCDMA
design (on a single PC102 device) that uses 233 pro-
grammable processors and 561 signals takes 205 sec-
onds for the full build process, including Place and
Switch. BDTI has not verified this data.

� The tools provide pre-defined �probes� that are
intended to be used for hardware debugging. A probe
is a processor with the sole purpose of capturing data
for debugging. The probes are non-invasive and do not
affect the timing or operation of program execution.
Data can be captured and sent to a host processor or
saved (with or without timestamps) for further investi-
gation. The pre-defined probes have 8-cycle resolution,
which should be sufficient for most debugging pur-

Switch Matrix

MEM (Memory)
Processing

Element Type

STAN (Standard)
Processing Element

Type
Communications Flow

Switch MatrixSwitch Matrix

MEM (Memory)
Processing

Element Type

MEM (Memory)
Processing

Element Type

STAN (Standard)
Processing Element

Type

STAN (Standard)
Processing Element

Type
Communications FlowCommunications Flow

FIGURE 4. Array Display Diagram

Page 8 © 2008 BDTI (www.BDTI.com). All rights reserved.

poses. Adding probes into a design is simple; probes
can be added without changing the original design�s
source code.

� The automatic placing and routing of processors on a
device works well and generally doesn�t require the
developer to do any additional analysis or optimization.

� Support for Tcl scripting in each tool in the picoTools
toolset provides a powerful degree of flexibility to the
user. Tcl scripting can be used either in GUI-based or
command-line execution of the tools. In addition to
support for standard Tcl commands, picoChip pro-
vides custom commands for each tool. For example,
the debugger has a full set of Tcl commands for debug-
ging, such as single-stepping, running, breakpoint
enabling/disabling, getting/setting instance registers or
memories, profiling, reading cycles, opening a log file,
etc. Because each tool interacts with Tcl commands, it�s
easy to write scripts to perform repetitive tasks.

� The Design Browser is useful for visualizing the design.
It provides a graphical and text-based hierarchical view
of the structure of the design implementation.

� PicoPlastic generates a diagram with detailed informa-
tion about how the design is mapped onto the chip. By
clicking any item, a description about its property and
instanciation will be displayed.

� In general, the picoTools documentation is well-orga-
nized, well-written, and provides thorough explana-
tions.

WEAKNESSES:
� The Tcl shell lacks support for command-line editing.

Typing commands within the shell is tedious and error-
prone.

� While the debugger is very powerful when used with
the Tcl shell, its GUI provides only limited functional-
ity. For example, the GUI debugger should be able to
display data in a processor's internal memory as a wave-
form. But even though the debugger can dump data
into a file, the waveform viewer provided with the
toolset can�t display the waveform properly. It would be
helpful if it were possible to profile an algorithm before
partitioning it, but since the profiler works at the pro-
cessor level, it can only be used after partitioning. In
general we found that the traditional command line,
makefiles, and scripts are much more efficient and
powerful for real application development than using
the GUI-based versions of the tools.

� It would be helpful if the documentation listed all of
the assembly instructions and the Tcl commands in the
table of contents. It doesn�t, however, so the developer
has to read through many pages to find a specific
instruction or command.

Observations and Conclusions
Like the tools for other massively parallel chips, the pic-

oTools don�t support automatic algorithm partitioning�
which, as we discussed earlier, is probably the hardest part
of developing an application for a massively parallel device.
To be most effective, users should manually parallelize their
algorithm before implementing on the picoChip device in
VHDL and C. Many users, however, will be starting from a
C implementation of their application. Since C is inherently
a sequential language, functionally decomposing an algoro-
rithm implemented in C into parallel sub-blocks can be
challenging, especially for complicated algorithms with data
inter-dependencies. It can also be challenging to find a par-
titioning scheme that balances the workload across proces-
sors. We didn�t evaluate this process ourselves in any detail
since our test application was simple enough to enable fairly
easy partitioning. Of the developers we interviewed, only
one had developed an application from scratch and per-
formed the partioning step (the other two modified refer-
ence designs from picoChip and did not need to do the
partioning themselves.) This developer characterized the
process as difficult and said that he spent a significant
amount of time on this step. In general, we expect that the
level of difficulty associated with partitioning will depend
on the complexity of the application. And customers who
use picoChip�s reference designs may not need to delve into
partitioning at all.

On the PC102, the total execution time for the applica-
tion is the time taken by the slowest sub-block�a single
processor can stall the whole chip. If this happens, either
that sub-block or the whole algorithm will probably need to
be re-partitioned. Often, more processors will need to be
recruited to achieve the desired speed, resulting in fewer
channels per chip. For complicated algorithms that are not
well structured, one might need to re-partition several times
to find the best balance. On the PC102, algorithm-level par-
titioning is likely to have a much greater impact on perfor-
mance than optimizing at the processor level. This means
that to some extent the focus of the optimization process is
shifted upwards, away from the traditional hand-optimiza-
tion of C or assembly code, though C/assembly optimiza-
tion will still often be required.

At the C/assembly level, we�ve found that the proces-
sors on the PC102 are relatively straightforward to program.
More generally, once the application has been designed and
partitioned, the tools provide good support for implemen-
tation and debugging, though we would prefer to see a more
sophisticated GUI. For our FFT test case, the picoTools
were fast, robust, and reasonably intuitive. Our overall expe-
rience with the picoChip tools and programming model was
positive�they appear to be well suited for the applications
they target.

