Insider Insights on the ARM11’s Signal-Processing Capabilities

Insight, Analysis, and Advice on Signal Processing Technology

Insider Insights on the ARM11’s
Signal-Processing Capabilities

Kenton Williston

Berkeley Design Technology, Inc.
Berkeley, California USA
+1 (510) 665-1600

info@BDTIl.com
http://www.BDTI.com

© 2005 Berkeley Design Technology, Inc.

Presentation Goals M

By the end of this workshop, you should know:

- How the ARM11 differs from its
predecessors -

- How the ARM11’s signal processing
performance compares to other GPPs’

- How the ARM11’s signal processing
performance compares to DSPS'’

- How to get the most out of
the ARM11 in signal processing applications

© 2005 Berkeley Design Technology, Inc. 2

© 2005 Berkeley Design Technology, Inc.

ARM Developers’ Conference Page 1 October 2005

Insider Insights on the ARM11’s Signal-Processing Capabilities

ARM Family Summary

ARM7 ARM9 ARMOE ARM11
Max Clock™ | 133 MHz 220 MHz 220 MHz 350 MHz
Die Area 0.32 mm=2 1.7 mm=2 0.59-2.2 2.4 —2.85
w/0 cache* (estimated) | mm=2 mm32
Power* 0.11 0.25 0.12-0.25 |0.45-0.8

mW/MHz mW/MHz mW/MHz mW/MHz
Instruction | ARMv4, ARMv4, ARMV5E, ARMV6,
Sets Thumb Thumb Thumb Thumb,

Thumb-2**

FPU No No VFPy2*** VFPv2
Pipeline 3 stages 5 stages 5 stages 8 stages
Branch No No No Yes
Prediction

*TSMC CLO13G/Artisan SAGE-X, worst-case conditions
**ARM1156T2(F)-S only

) ***ARM946E-S and ARM966E-S only
© 2005 Berkeley Design Technology, Inc. 3

ARM Family Summary
ARM7 ARM9 ARMOE ARM11
Ma_lximum 1 x 32-bit 1 x 32-bit 1 x 32-bit 1 x 32-bit
/T*rq'thm%t'ct 1 x 16-bit |2 x 16-bit
ro

SO 4 x 8-bit
Multiplier Data- Data- 1 cycle 2+ cycles
Latency dependent dependent
Memory Von Harvard Harvard Harvard
System Neumann
Data Bus 32-bit 32-bit 32-bit 64-bit
Parallel No No No Yes
Load/Store
Load 1 cycle 1 cycle 1 cycle 3 cycles
Latency

© 2005 Berkeley Design Technology, Inc. 4

© 2005 Berkeley Design Technology, Inc.

ARM Developers’ Conference Page 2 October 2005

Insider Insights on the ARM11’s Signal-Processing Capabilities

BDTI Benchmarks™
2500
* 2000 —
S
[}
o]
S
L 1500
2
— I
o 1000
c
2
I s00 -
0] T T
ARM ARM Intel TI CEVA StarCore
ARMOE ARM1136 PXA27x 'C55x CEVA-X1620 SC1400
220 MHz 350 MHz 624 MHz 300 MHz 200 MHz 185 MHz
O BDT IsimMark2000™* B BDT Imark2000™**
*TSMC CLO13G/Artisan SAGE-X, worst-case conditions
**Fastest currently-available chips
© 2005 Berkeley Design Technology, Inc. 5

Signal Processing Energy Efficiency
BDTI Benchmarks™
m 90
£ 80
(]
G 70
E 60
2 50
]
= 0
10
— 30
2
9 20
I 10
I ‘ ‘ ‘
ARM ARM CEVA StarCore
ARM926E-S ARM1136J-S CEVA-X1620 SC1400
O BDT IsimMark2000™/mWw*
*TSMC CLO13G/Artisan SAGE-X, nominal conditions; power is for core only
© 2005 Berkeley Design Technology, Inc. 6

© 2005 Berkeley Design Technology, Inc.

ARM Developers’ Conference Page 3 October 2005

Insider Insights on the ARM11’s Signal-Processing Capabilities

Signal Processing Memory Efficiency
BDTI Benchmarks™

[}
o

T

T
|

T

T

T

'T
|

T

— Higher is More Efficient =

o

ARM ARM Intel T CEVA StarCore
ARMOE ARM1136 PXA27x 'C55x CEVA-X1620 SC1400

O BDTImemMark2000™

© 2005 Berkeley Design Technology, Inc. 7

Programming Tips

Know how to use the compiler
- Understand compiler behavior
- Know the ARM11 architecture

Know when to use the compiler—and when to
write assembly code

Make effective use of SIMD operations
- Organize data for SIMD
- Process multiple samples when possible
- Consider all the available instructions
- Sometimes S/SD is better!

© 2005 Berkeley Design Technology, Inc. 8

© 2005 Berkeley Design Technology, Inc.

ARM Developers’ Conference Page 4 October 2005

Insider Insights on the ARM11’s Signal-Processing Capabilities

Programming Tips M

Memory access is costly

- Organize data flow to minimize cache
misses

- Keep data in registers and re-use it
- Use large loads and stores

Use software pipelining to mask multiplier and
load/store latencies

Register pressure is tight; use fewer registers

- CAUTION: Don’t increase memory accesses
in the process!

© 2005 Berkeley Design Technology, Inc. 9

Example: FIR Filter Kernel M

C implementation of FIR kernel

N=40;
T=16;
12 for (n=0; n<N; n++) {
y[n]=2x[n-k]h[K] for (k=0,SUM=0; k<T; k++) {
K=o SUM += x[n-k] * h[k];:
¥
y[n] = SUM;
}

© 2005 Berkeley Design Technology, Inc. 10

© 2005 Berkeley Design Technology, Inc.

ARM Developers’ Conference Page 5 October 2005

Insider Insights on the ARM11’s Signal-Processing Capabilities

3 branches

2 instructions per branch

Analysis: Compiled FIR Filter
IL1.16] [CWP r6,#0 |
MoV r3,#0
MoV r12,#0
BLE IL1.68]
|L1.32] SuB rd,r5,r3
ADD r8,r1,r3,LSL #1
ADD r4,r0,r4,LSL #1
LDRH r8, [r8,#0]
LDRH ra,[r4,#0]
ADD r3,r3,#1
lcmp r3,ré
SMLABB rl2,r4,r84rl
BLT |L1.32]
|L1.68] ADD r3,r2,r5,
ADD r5,r5,#1
lcvp r5,r7
STRH ri2,[r3,#0]
BLT |L1.16]
© 2005 Berkeley Design Technology, Inc.

| 2 instructions per load |

1 stall cycle |

11

Inner Loop Cycle Count

IL1.16] CMP r6,#0
MOV r3,#0
MOV ri2,#0
BLE |L1.68]

[CI-32] SUB r4,75,1r3 N=40:
ADD rs,rl,r3,LSL #1 T=16:
ADD rd,r0,r4,LSL #1
LDRH r8,[r8,#0] for (n=0; n<N; n++) {
LDRH r4,[r4,#0] f— for (k=0,SUM=0; k<T; k++) {
ADD r3,r3,#1 SUM += x[n-k] * h[K];
CMP r3,ré6 3
SMLABB rl2,r4,r8,rl12 yInT = SUM;
BLT |L1.32] 3

|L1.68] ADD r3,r2,r5,LSL #1
ADD r5,r5,#1
P rs,r/ 10 cycles per tap = 0.10 taps per cycle
STRH ri2,[r3,#0]
BLT IL1.16]

© 2005 Berkeley Design Technology, Inc. 12

© 2005 Berkeley Design Technology, Inc.

ARM Developers’ Conference

Page 6

October 2005

ARM Developers’ Conference

Insider Insights on the ARM11’s Signal-Processing Capabilities

Give the Compiler a Hand

Human-friendly Compiler-friendly

#define N 40
#define T 16

N=40;
T=16;

for (n=0; n<N; n++) {
for (k=0,SUM=0; k<T; k++) {
SUM += Xx[n-k] * h[k];
}
y[n] = SuM;
¥
b

Use constants instead of variables

13

© 2005 Berkeley Design Technology, Inc.

Give the Compiler a Hand

Human-friendly Compiler-friendly

#define N 40
#define T 16

for (n=0; n<N; n++) { for (n=N; n; n--) {
for (k=0,SUM=0; k<T; k++) {
SUM += x[n-k] * h[k];
¥
y[n] = SUM;
}
}

T~

for (k=T,SUM=0; k; k--) {

3

3
}

Count downwards in “for” loops

14

© 2005 Berkeley Design Technology, Inc.

© 2005 Berkeley Design Technology, Inc.

Page 7

October 2005

Insider Insights on the ARM11’s Signal-Processing Capabilities

Human-friendly

for (n=0; n<N; n++) {
for (k=0,SUN=0: K<T: ki+) {

Give the Compiler a Hand

Compiler-friendly

#define N 40
#define T 16

>

SUM += X[n-K] = RIKI:

y[n] = SUM;

3

for (n=N; n; n--) {

short *xt = x++;
short *ht = h;

}

for (k=T,SUM=0; k; k--) {
SUM += *xt-- * *ht++;

I
*y++ = SUM;

Make pointer increment explicit

© 2005 Berkeley Design Technology, Inc.

15

Analysis: Compiled FIR Filter

|L1.8] MoV r3,r0
ADD r0,r0,#2
MOV riz2,ri
MOV r4,#0x10
MOV r5,#0

|L1.28]| [CDRH r6,[r3],#2
LDRH r7,[ri2],#2
SUBS rd,rd,#1
SMLABB r5,r6,r7,r5
BNE |L1.28]
SUBS r8,r8,#1
STRH r5,[r2],#2
[BNE IL1.8] |

4—‘ 2 stall cycles |

2 branches
1 instruction per branch

| 7 cycles per tap = 0.14 taps per cycle*

© 2005 Berkeley Design Technology, Inc.

*Inner loop only

| 1 instruction per load |

16

© 2005 Berkeley Design Technology, Inc.

ARM Developers’ Conference

Page 8

October 2005

Insider Insights on the ARM11’s Signal-Processing Capabilities

Adding SIMD: The Simple Approach

LOOP LDRD r6, [ro], #8

LDRD rio, [ri], #8
SUBS r2, r2, #4

2 stall cycles
SMLAD ri2, r6, ri0, ril2

1 stall cycle
SMLAD ri2, r7, ril, ri2
BGT LOOP

4 taps in 9 cycles = 0.44 taps per cycle

© 2005 Berkeley Design Technology, Inc. 17

Software Pipelining

LDRD r4, [r0], #8

LDRD r8, [ri1], #8
LOOP LDRD r6, [r0], #8
SMLAD rl2, r4, r8, ri2
LDRD r10, [r1], #8
|SMLAD ri2, r5, r9, ri2 pipelined second iteration
SUBS r2, r2, #8
|LDRGTD r4, [r0], #8
SMLAD rl2, r6, ri0, r
[LoreTD r8, [ri], #8
SMLAD rl2, r7, rll, ril2
BGT LOOP

8 taps in 10 cycles = 0.80 taps per cycle

© 2005 Berkeley Design Technology, Inc. 18

© 2005 Berkeley Design Technology, Inc.

ARM Developers’ Conference Page 9 October 2005

Insider Insights on the ARM11’s Signal-Processing Capabilities

Fully Optimized FIR Inner Loop

loop Idrd rx, [rx, #x] smlad rx, rx, rx, rx smlad rx, rx, rx, rx
smuad rx, rx, rx smlad rx, rx, rx, rx smlad rx, rx, rx, rx
smuad rx, rx, rx smlad rx, rx, rx, rx Idr rx, [rx, #x]
smlad rx, rx, rx, rx Idrd rx, [rx], #x smlad rx, rx, rx, rx
smlad rx, rx, rx, rx Idrd rx, [rx, #x] smlad rx, rx, rx, rx
Idrd rx, [rx, #x] smlad rx, rx, rx, rx smlad rx, rx, rx, rx
smuad rx, rx, rx smlad rx, rx, rx, rx smlad rx, rx, rx, rx
smuad rx, rx, rx smlad rx, rx, rx, rx smlad rx, rx, rx, rx
smlad rx, rx, rx, rx smlad rx, rx, rx, rx smlad rx, rx, rx, rx
smlad rx, rx, rx, rx Idrd rx, [rx, #x] subs rx, rx, #x
Idrd rx, [rx], #x smlad rx, rx, rx, rx Idrd rx, [rx, #x]
Idrd rx, [rx, #x] smlad rx, rx, rx, rx Idmia rx!, {rx-rx}
smlad rx, rx, rx, rx smlad rx, rx, rx, rx mov rx, rx, ASR #x
smlad rx, rx, rx, rx smlad rx, rx, rx, rx mov rx, rx, ASR #x
smlad rx, rx, rx, rx Idrd rx, [rx], #-x pkhtb rx, rx, rx, ASR #x
smlad rx, rx, rx, rx Idrd rx, [rx, #x] pkhtb rx, rx, rx, ASR #x
Idrd rx, [rx, #x] smlad rx, rx, rx, rx strd rx, [rx, #x]
smlad rx, rx, rx, rx smlad rx, rx, rx, rx bgt loop

64 taps in 54 cycles = 1.19 taps/cycle

© 2005 Berkeley Design Technology, Inc.

19

Tools and Other Considerations

Compiler excels on code size, not on code speed
- Compiler’s job is much harder with ARM11

ARM debugger provides limited visibility
- Cannot view registers, memory in common formats
- No easy way to view system-level behavior

Know the simulation models and development boards—
and when to use which

- New cycle-accurate simulator is key to optimization
- WARNING: ETM may produce confusing results!

Don’t reinvent the wheel: use off-the-shelf software
when appropriate

© 2005 Berkeley Design Technology, Inc.

20

© 2005 Berkeley Design Technology, Inc.

ARM Developers’ Conference Page 10

October 2005

Insider Insights on the ARM11’s Signal-Processing Capabilities

Conclusions

ARM11 emphasizes speed over efficiency

- Fast on signal-processing tasks

- Relatively energy-hungry

- Relatively large, but good memory efficiency
ARM11 is more complicated than its predecessors

- Challenges are manageable with good planning

- Likely easier to program than a multiprocessor SoC
New tools help ease the pain

- Tools are still missing important features
Learning the tools and techniques is the key to success!

© 2005 Berkeley Design Technology, Inc. 21

For More Information...
www.BDTI.com

Inside [DSP] newsletter and quarterly reports
Benchmark scores for dozens of processors
Pocket Guide to Processors for DSP
- Basic stats on over 40 processors
Articles, white papers, and presentation slides
- Processor architectures and performance
- Signal processing applications
- Signal processing software optimization
comp.dsp FAQ

2004 Edition
© 2005 Berkeley Design Technology, Inc. 22

© 2005 Berkeley Design Technology, Inc.

ARM Developers’ Conference Page 11 October 2005

