Insight, Analysis, and Advice on Signal Processing Technology

Insider Insights on the ARM11's Signal-Processing Capabilities

Kenton Williston

Berkeley Design Technology, Inc. Berkeley, California USA +1 (510) 665-1600

> info@BDTI.com http://www.BDTI.com

© 2005 Berkeley Design Technology, Inc.

Presentation Goals

By the end of this workshop, you should know:

- How the ARM11 differs from its predecessors
- How the ARM11's signal processing performance compares to other GPPs'
- How the ARM11's signal processing performance compares to DSPs'
- How to get the most out of the ARM11 in signal processing applications

© 2005 Berkeley Design Technology, Inc.

2

Programming Tips

Know how to use the compiler

- Understand compiler behavior
- Know the ARM11 architecture

Know *when* to use the compiler—and when to write assembly code

Make effective use of SIMD operations

- Organize data for SIMD
- Process multiple samples when possible
- Consider all the available instructions
- Sometimes SISD is better!

© 2005 Berkeley Design Technology, Inc.

8

Programming Tips

Memory access is costly

- Organize data flow to minimize cache misses
- · Keep data in registers and re-use it
- Use large loads and stores

Use software pipelining to mask multiplier and load/store latencies

Register pressure is tight; use fewer registers

 CAUTION: Don't increase memory accesses in the process!

© 2005 Berkeley Design Technology, Inc.

9

```
Example: FIR Filter Kernel

C implementation of FIR kernel

\begin{bmatrix}
N=40; \\
T=16;
\\
for (n=0; n<N; n++) {
for (k=0,SUM=0; k<T; k++) {
SUM += x[n-k] * h[k];
}
y[n] = SUM;
}

© 2005 Berkeley Design Technology, Inc.
```


© 2005 Berkeley Design Technology, Inc.

| Toop | Idrd | rx, | rx, | #x | | smlad | rx, | rx, | rx | rx | smlad | rx, | rx, | rx, | rx | smlad | rx, | rx, | rx, | rx | smlad | rx, | rx, | rx, | rx | smlad | rx, | rx, | rx, | rx | smlad | rx, | rx, | rx, | rx | smlad | rx, | rx, | rx, | rx | smlad | rx, | rx, | rx, | rx | smlad | rx, | rx, | rx, | rx, | rx | smlad | rx, | rx, | rx, | rx, | rx | smlad | rx, | rx, | rx, | rx, | rx | smlad | rx, | rx, | rx, | rx, | rx | smlad | rx, | rx, | rx, | rx, | rx, | rx | smlad | rx, | rx, | rx, | rx, | rx, | rx, | rx | smlad | rx, | rx,

Tools and Other Considerations

19

Compiler excels on code size, not on code speed

Compiler's job is much harder with ARM11

ARM debugger provides limited visibility

- Cannot view registers, memory in common formats
- No easy way to view system-level behavior

Know the simulation models and development boards and when to use which

- New cycle-accurate simulator is key to optimization
- WARNING: ETM may produce confusing results!

Don't reinvent the wheel: use off-the-shelf software when appropriate

© 2005 Berkeley Design Technology, Inc.

© 2005 Berkeley Design Technology, Inc.

20

Conclusions

ARM11 emphasizes speed over efficiency

- Fast on signal-processing tasks
- Relatively energy-hungry
- Relatively large, but good memory efficiency

ARM11 is more complicated than its predecessors

- Challenges are manageable with good planning
- Likely easier to program than a multiprocessor SoC

New tools help ease the pain

Tools are still missing important features
 Learning the tools and techniques is the key to success!

© 2005 Berkeley Design Technology, Inc.

21

For More Information... www.BDTL.com

Inside [DSP] newsletter and quarterly reports Benchmark scores for dozens of processors Pocket Guide to Processors for DSP

- Basic stats on over 40 processors
- Articles, white papers, and presentation slides
 - Processor architectures and performance
 - Signal processing applications
- Signal processing software optimization comp.dsp FAQ

2004 Edition

© 2005 Berkeley Design Technology, Inc.