Insight, Analysis, and Advice on Signal Processing Technology

Introduction to Video Compression

(CSD-600)

Jeff Bier Berkeley Design Technology, Inc.

> info@BDTI.com http://www.BDTI.com

© 2005 Berkeley Design Technology, Inc.

Outline

- Motivation and scope
- Still-image compression techniques
- Motion estimation and compensation
- Reducing artifacts
- Color conversion
- Conclusions

© 2005 Berkeley Design Technology, Inc.

Motivation and Scope

- Consumer video products increasingly rely on video compression
 - DVDs, digital TV, personal video recorders, Internet video, multimedia jukeboxes, video-capable cell phones and PDAs, camcorders...
- Video product developers need to understand the operation of video "codecs"
 - To select codecs, processors, software modules
 - To optimize software
- This presentation covers:
 - Operation of video codecs and post-processing
 - Computational and memory demands of key codec and postprocessing components

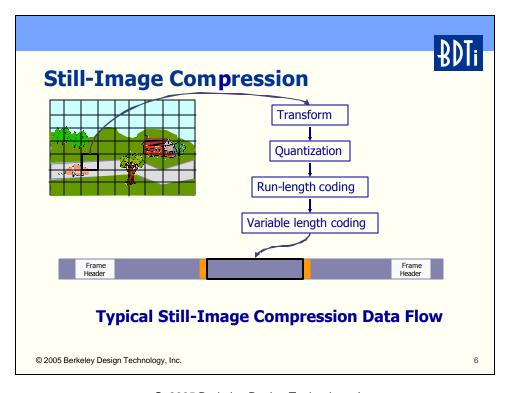
© 2005 Berkeley Design Technology, Inc.

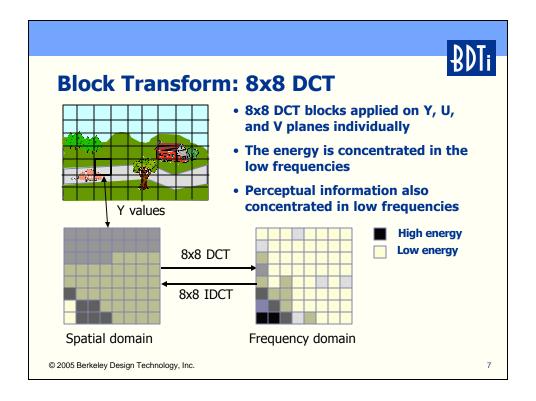
3

Outline

- Motivation and scope
- Still-image compression techniques
- Motion estimation and compensation
- Reducing artifacts
- Color conversion
- Conclusions

© 2005 Berkeley Design Technology, Inc.

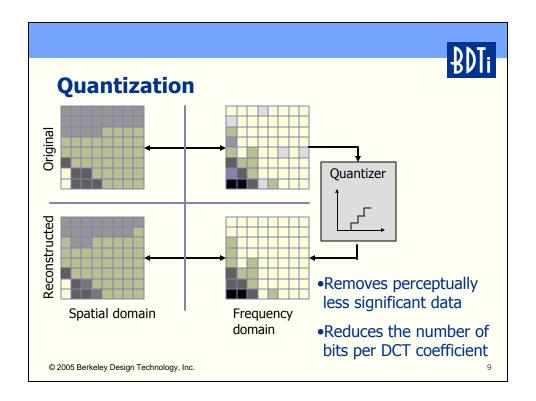



Still-Image Compression

- Still-image compression
 - Still-image techniques provide a basis for video compression
 - Video can be compressed using still-image compression individually on each frame
 - E.g., "Motion JPEG" or MJPEG
- But modern video codecs go well beyond this
 - Start with still-image compression techniques
 - Add motion estimation/compensation
 - Takes advantage of similarities between frames in a video sequence

© 2005 Berkeley Design Technology, Inc.

5


BDTi

Block Transform: Resource Reqt's

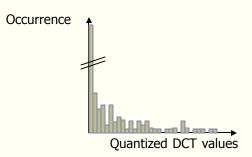
- · Compute load:
 - Up to 30% of total video decoder processor cycles
 - MPEG-4 CIF (352x288) @ 30 fps:
 - 71,280 DCTs/s
 - ~40 MHz on a TMS320C55x DSP
 - ~10 MHz if using TMS320C55x DCT accelerator
 - Many implementation and optimization options
 - · Can make compute requirements hard to predict
- Memory usage: negligible

© 2005 Berkeley Design Technology, Inc.

8

Quantization: Resource Reqt's

- Quantization (encoder) and dequantization (decoder and encoder) have similar compute loads
- Compute load:
 - From 3% to about 15% of total decoder processor cycles
 - Typically near the lower end of this range
 - MPEG-4 CIF (352x288) @ 30 fps:
 - \circ ~10 MHz on a TMS320C55x DSP (estimated)
- Memory usage: negligible


© 2005 Berkeley Design Technology, Inc.

10

Coding Quantized DCT Coefficients

Goal: Reduce the number of bits required to transmit the quantized coefficients

Observation: Unequal distribution of quantized DCT coefficient values

© 2005 Berkeley Design Technology, Inc.

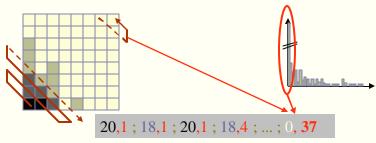
11

Variable Length Coding (VLC/VLD)

- Allocates fewer bits to the most frequent symbols (e.g., using Huffman)
- Integer number of bits per symbol
 - Not the most efficient coding method
 - Arithmetic coding more efficient, but expensive
 - Run-length coding improves efficiency of VLC/VLD for image and video coding

<u>Symbol</u>	Frequency	<u>Code</u>
Α	22	1
В	16	011
C	9	0101
D	7	0100
E	4	0011
F	2	0010

© 2005 Berkeley Design Technology, Inc.


12

Run-Length Coding

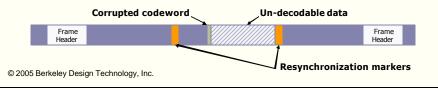
Encodes value and number of successive occurrences

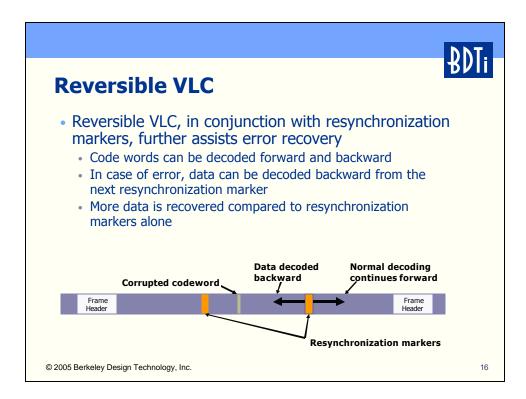
Takes advantage of the high number of recurring zeros

© 2005 Berkeley Design Technology, Inc.

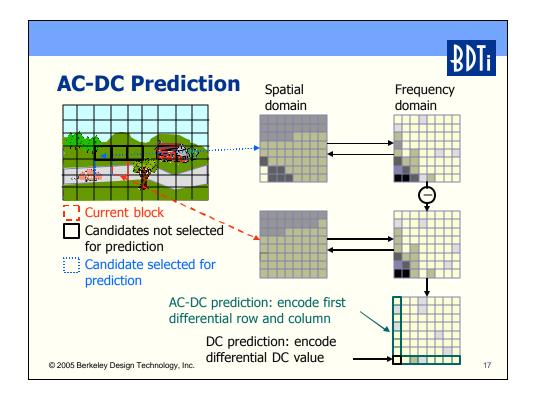
13

Variable Length Coding: Processing Reqt's


- VL decoding much more computationally demanding than VL encoding
- VLD compute load:
 - Up to 25% of total video decoder processor cycles
 - MPEG-4 CIF (352x288) @ 30 fps, 700 kbps:
 - ~15-25 MHz on a TMS320C55x DSP (estimated)
 - About 11 operations per bit on average
- Memory usage
 - A few KB of memory for lookup tables
 - More for speed optimizations


© 2005 Berkeley Design Technology, Inc.

Resynchronization Markers



- Without markers, a single bit error in the coded bitstream prevents decoding of the rest of the frame
 - Size of a corrupted variable-length code word is unknown
 - Therefore, the start of the next code word (and all following code words) is unknown
- Resynchronization markers help the decoder recover from bitstream errors
 - Provide a known bit pattern interspersed throughout the bitstream
 - In case of an error, decoder searches for next marker, then continues decoding

© 2005 Berkeley Design Technology, Inc.

AC-DC Prediction

- AC-DC prediction cannot be used in conjunction with motion compensation
 - ⇒ Used mostly for compressing a single image
 - DC prediction used in JPEG
- AC-DC prediction often uses simple filters to predict each coefficient value from one or more adjacent blocks

© 2005 Berkeley Design Technology, Inc.

18

AC-DC Prediction: Processing Reqt's

- · Compute load:
 - DC prediction has negligible load
 - AC-DC prediction used in about 8% of frames in typical video
 - Negligible average load (~2% of processor cycles in decoder)
 - Substantial per-frame load (~20-30% of cycles required to decode a frame that uses AC-DC prediction)
- Memory usage:
 - Under 2 KB for CIF (352x288) resolution
 - But more memory (up to 10 KB) can result in faster code
 - May be overlapped with other memory structures not in use during prediction

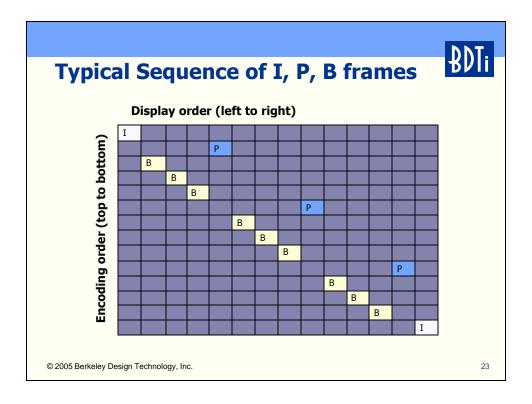
© 2005 Berkeley Design Technology, Inc.

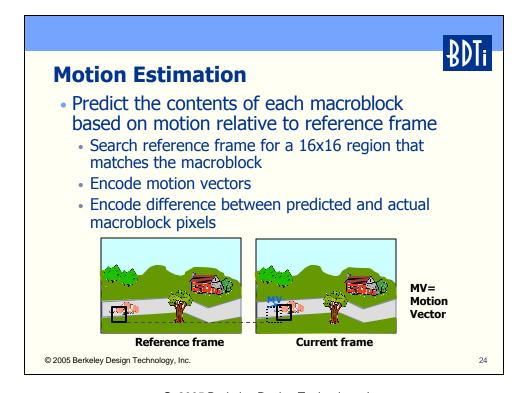
19

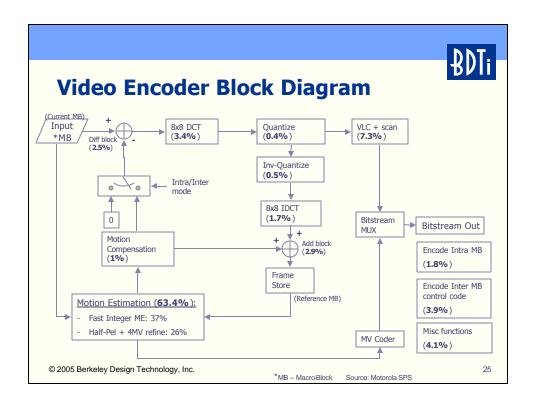
Outline

- Motivation and scope
- Still-image compression techniques
- Motion estimation and compensation
- Reducing artifacts
- Color conversion
- Conclusions

© 2005 Berkeley Design Technology, Inc.

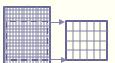

Motion Estimation and Compensation


- Still image compression ignores the correlation between frames of video
 - JPEG achieves ~10:1 compression ratio
 - Wavelet transform-based image coding reaches compression ratios up to ~30:1
- Adding motion estimation and compensation results in much higher compression ratios
 - Good video quality at compression ratios as high as ~200:1


© 2005 Berkeley Design Technology, Inc.


21

Motion Estimation and Compensation I frame is encoded as a still Requires at least one image and doesn't depend on "reference frame" any reference frame Reference frame must be encoded before the current frame P frame depends on previously But, reference frame can displayed reference frame be a future frame in the display sequence Three kinds of frames: I, P, and B B frame depends on previous and future reference frames 22 © 2005 Berkeley Design Technology, Inc.



© 2005 Berkeley Design Technology, Inc.

Motion Estimation: Efficient Motion Vector Search



Evaluate only promising candidate motion vectors

- · Often proprietary
- Refine candidate vector selection in stages
- Predict candidate vectors from surrounding macroblocks and/or previous frames

Motion vector search approach is a key differentiator between video encoder implementations

© 2005 Berkeley Design Technology, Inc.

27

Motion Estimation: Processing Reqt's

- Compute load
 - Most demanding task in video compression
 - Up to 80% of total encoder processor cycles
 - Many search methods exist; requirements vary by method
 - May vary with video program content
 - Makes encoder computational demand several times greater than that of the decoder
 - Dominated by SAD computation

Memory usage

- Motion estimation requires reference frame buffers
 - Frame buffers dominate the memory requirements of the encoder
 - E.g., 152,064 bytes per frame @ CIF (352x288) resolution
- High memory bandwidth required

© 2005 Berkeley Design Technology, Inc.

Motion Compensation: Processing Reqt's

- Motion compensation copies pixels from reference frame to predict current macroblock
 - Requires interpolation for non-integer motion vector values
- Compute load
 - Varies with video program content
 - Can require from 5% to 40% of total decoder processor cycles
 - MPEG-4 CIF (352x288) @ 30 fps:
 - Roughly 15-25 MHz on a TMS320C55x DSP (estimated)
- Memory usage
 - Requires reference frame buffers
 - Frame buffers dominate decoder memory requirements
 - Good memory bandwidth is desirable, but less critical compared to motion estimation

© 2005 Berkeley Design Technology, Inc.

29

Outline

- Motivation and scope
- Still-image compression techniques
- Motion estimation and compensation
- Reducing artifacts
- Color conversion
- Conclusions

© 2005 Berkeley Design Technology, Inc.

Artifacts: Blocking and Ringing

 Blocking: Borders of 8x8 blocks become visible in reconstructed frame

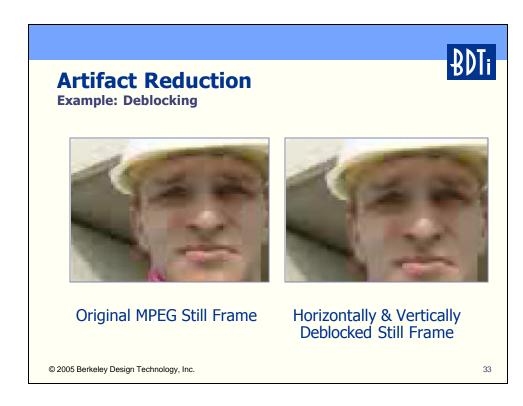
• **Ringing:** Distortions near edges of image features

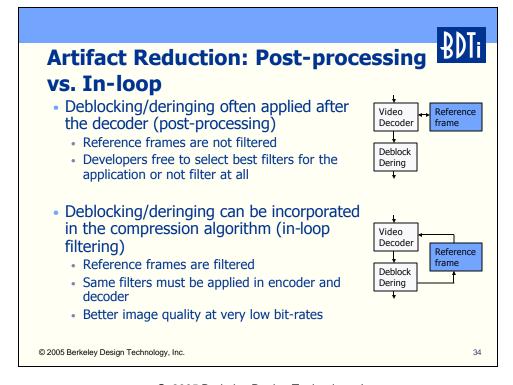
Original image

Reconstructed image (with ringing Artifacts)

© 2005 Berkeley Design Technology, Inc.

31




Deblocking and Deringing Filters

Low-pass filters are used to smooth the image where artifacts occur

- Deblocking:
 - Low-pass filter the pixels at borders of 8x8 blocks
 - One-dimensional filter applied perpendicular to 8x8 block borders
- Deringing:
 - Detect edges of image features
 - Adaptively apply 2D filter to smooth out areas near edges
 - Little or no filtering applied to edge pixels in order to avoid blurring

© 2005 Berkeley Design Technology, Inc.

Artifact Reduction: Processing Reqt's

- Deblocking and deringing filters can require more processor cycles than the video decoder
 - Example: MPEG-4 Simple Profile, Level 1 (176x144, 15 fps) decoding requires 14 MIPS on ARM's ARM9E for a relatively complex video sequence
 - With deblocking and deringing added, load increases to 39 MIPS
 - Nearly 3x increase compared to MPEG-4 decoding alone!
- Post-processing may require an additional frame buffer

© 2005 Berkeley Design Technology, Inc.

35

Outline

- Motivation and scope
- Still-image compression techniques
- Motion estimation and compensation
- Reducing artifacts
- Color conversion
- Conclusions

© 2005 Berkeley Design Technology, Inc.

Color Space Conversion

- Need for color conversion
 - Capture and display video equipment: RGB...
 - · ...while codecs use YUV
- Computational demand
 - 12 operations per pixel ⇒ 36 million operations/second for CIF (352x288) @ 30 fps
 - About 36 MHz on a TMS320C55x DSP
 - Not including interpolation of chrominance planes
 - Roughly 1/3 to 2/3 as many processor cycles as the video decoder

© 2005 Berkeley Design Technology, Inc.

37

Outline

- Motivation and scope
- Still-image compression techniques
- Motion estimation and compensation
- Reducing artifacts
- Color conversion
- Conclusions

© 2005 Berkeley Design Technology, Inc.

Conclusions

Understanding the computational and memory requirements of video compression is critical but challenging

- Application design choices are driven by computational and memory requirements
 - Algorithm selection, processor selection, software optimization
 - Video processing often stresses processing resources
- But video applications combine many different signalprocessing techniques
 - Transforms, prediction, quantization, entropy coding, image filtering, etc.
- And there is large variation in computational and memory requirements among different applications
 - E.g., digital camcorder has vastly different requirements from a video-enabled cell phone, even when using the same compression standard

© 2005 Berkeley Design Technology, Inc.

39

Conclusions, cont.

- Understanding computational load
 - Computational load of encoder is several times greater than that of decoder due to motion estimation
 - Computational load proportional to frame size and rate for most functions
 - Note: VLD computational load is proportional to bit rate
 - Post-processing steps—deblocking, deringing, color space conversion—add considerably to the computational load
- Computational load can be difficult to predict
 - Many different approaches to motion estimation
 - Computational load of some tasks can fluctuate wildly depending on video program content
 - E.g., motion compensation

© 2005 Berkeley Design Technology, Inc.

Conclusions, cont.

- Understanding memory requirements:
 - Memory requirements dominated by frame buffers
 - A decoder that supports only I and P frames requires two frame buffers (current and reference)
 - A decoder that supports I, P, and B frames requires three buffers (current and two reference)
 - Deblocking/deringing/color conversion may require an additional buffer
 - Program memory, tables, other data comprise a nonnegligible portion of memory use
 - But this portion is still several times smaller than frame buffers
- High memory use often necessitates off-chip memory
 - Off-chip memory bandwidth can be a performance bottleneck

© 2005 Berkeley Design Technology, Inc.

41

Conclusions, cont.

- Video compression used in many products
 - DVDs, digital TV, personal video recorders, Internet video, multimedia jukeboxes, video-capable cell phones and PDAs, camcorders...
- Different products have different needs
 - Wide range of frame sizes and rates, video quality, bit rates, post-processing options, etc.
 - Result in wide range of computational and memory requirements
- Need to understand the operation of video codecs
 - To understand computational and memory requirements
 - To select codecs, processors, software modules
 - To optimize software

© 2005 Berkeley Design Technology, Inc.

For More Information... www.BDTI.com

Inside [DSP] newsletter and quarterly reports Benchmark scores for dozens of processors Pocket Guide to Processors for DSP

- Basic stats on over 40 processors
- Articles, white papers, and presentation slides
- Processor architectures and performance
- Signal processing applications
- Signal processing software optimization comp.dsp FAQ

