Evaluating FPGAs For Communication Infrastructure Applications

Presentation Goals

By the end of this workshop, you should know:
- Key processor-selection criteria and trends for communication infrastructure
- Key strengths and weaknesses of high-end DSPs
- Key strengths and weaknesses of high-end FPGAs
- How typical DSPs and FPGAs stack up in terms of performance and cost/perf.
Evaluating FPGAs For Communication Infrastructure Applications

Generalized Comm System

- Signal In
- Source Coding
- Channel Coding
- Modulation
- Multi. Access
- Receiver
- Inverse Channel Coding
- Source Decode
- Signal Out
- Encryption, Decryption
- Transmitter
- Multi. Access
- Detection, Demodulation
- Parameter Estimation

Systems: Two Types

Infrastructure
- Examples: base stations, central office equipment, cable “head-end”

Terminals
- Portable
 - Battery-powered, size-constrained
 - Examples: cellular phone, mobile media player, PDA
- Non-portable (e.g., “CPE”)
 - Examples: set-top box, home media server
Terminal Requirements

Key criteria
• Sufficient performance
• Cost
• Energy efficiency
• Memory use
• Small-system integration support
• Packaging
• Tools
• Application-development infrastructure
• Chip-product roadmap

Infrastructure Requirements

Key criteria
• Board area per channel
• Power per channel
• Cost per channel
• Large-system integration support
• Tools
• Application-development infrastructure
• Architecture roadmap
 • Compatibility, multi-vendor support
Key Processing Technologies

<table>
<thead>
<tr>
<th>DSPs</th>
<th>Massively parallel processors</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPPs/DSP-enhanced GPPs</td>
<td>ASSPs</td>
</tr>
<tr>
<td>Reconfigurable architectures</td>
<td>ASICs</td>
</tr>
<tr>
<td>- FPGAs</td>
<td>- Licensable cores</td>
</tr>
<tr>
<td></td>
<td>- Customizable cores</td>
</tr>
<tr>
<td></td>
<td>- Platform-based design</td>
</tr>
<tr>
<td>Reconfigurable processors</td>
<td></td>
</tr>
</tbody>
</table>

Massively parallel processors

DSPs: The Incumbents

Modern conventional DSPs introduced ~1986
- One instruction, one MAC per cycle
- Developed primarily for telecom applications

High-performance VLIW DSPs introduced ~1997
- Developed primarily for wireless infrastructure
- Speed focused:
 - Independent execution units support many instructions, MACs per cycle
 - Deeper pipelines and simpler instruction sets support higher clock rates
 - Emphasis on compilability
Example: StarCore SC140

- 6-issue 16-bit fixed-point architecture
 - Up to four 16-bit MACs per cycle
- Motorola MSC8101 (one SC140 core) shipping at 300 MHz, $116 (1 ku)

Motorola MSC8101

- PowerPC Bus (100 MHz)
- DMA Controller
- Memory Controller
- SC140 Core
- Filter Coprocessor
- 512 KB SRAM
- CPM
 - ATM
 - Ethernet
 - UTOPIA
 - E1/T1 E3/T3
- HDLC
- UART
- I²C
- SPI
- Addr. (32-bit)
- Data (64-bit)
Other Infrastructure DSPs

Texas Instruments TMS320C64x
- 8-issue 16-bit fixed-point architecture
 - Up to four 16-bit MACs per cycle
 - Special instructions and co-processors for communications
 - Compatible with 'C62x, 'C67x
- Sampling at 720 MHz, $216 (1 ku)
 - Shipping at 600 MHz, $108 (1 ku)

Analog Devices TigerSHARC (ADSP-TS20x)
- 4-issue fixed- and floating-point
 - Up to eight 16-bit fixed-point MACs per cycle
 - Special instructions for 3G base stations
 - High memory bandwidth (18 GB/s)
- Sampling at 600 MHz, $334 (1 ku)
 - TS101 shipping at 300 MHz, $234 (1 ku)

DSP Processors

Strengths and Weaknesses

- DSP performance, efficiency strong compared with other types of off-the-shelf processors
- But may not be adequate for demanding tasks
 - Fixed architectures limit efficiency, design flexibility
 - Centralized computation and extensive indirection reduce efficiency
- Relatively limited selection of chips per family
- But products offer strong, relevant integration
DSP Processors

Strengths and Weaknesses

- Relatively low development cost, risk
 - Mature technology
 - Large, experienced developer base
 - Fast time-to-market
 - Some architectures available from multiple vendors
 But some vendors' roadmaps are unclear or uncertain

Why Consider Alternatives?

Convergence
- DSP-intensive products increasingly include complex non-DSP functionality

Processing throughput, density
- E.g., 3G wireless computation demands outstripping DSP processor advances

Development
- DSP processor software development tools (e.g., compilers) have significant limitations

Cost
- Desire for integration drives SoC approach

Energy efficiency

Flexibility
Wireless Bandwidth Growth

2G
- GSM
- DSC1800
- PCS1900
- IS-95B
- IS-54B
- IS-136
- PDC

2.5G
- GPRS
- HCSD
- IS-95C
- IS-136+
- IS-136 HS
- Compact EDGE

3G
- 3GPP-DS-FDD
- 3GPP-DS-TDD
- 3GPP-MC
- ARIB W-CDMA
- IS-2000 CDMA
- IS-95-HDR

Wireless
Bandwidth
Growth

NARROWBAND
CIRCUIT
VOICE

8-13 Kbps

64-384 Kbps

384-2000+ Kbps

WIDEBAND
PACKET
DATA

~100 MIPS

~10,000 MIPS

~100,000 MIPS

Are Processors Efficient?

The Monarchial Model of Computing

Steps for performing one basic operation:
- Fetch instruction from memory
- Decode instruction
- Compute address
- Fetch data
- (Off-chip memory \(\rightarrow\) L2, update cache state)
- (L2 \(\rightarrow\) L1, update cache state)
- L1 \(\rightarrow\) registers
- Registers \(\rightarrow\) arithmetic unit
- Perform desired operation
- Write result
- Compute address, access hierarchy
- Update data pointers
- Update program counter

© 2003 Berkeley Design Technology, Inc.
FPGAs

Field-Programmable Gate Arrays

An amorphous “sea” of reconfigurable logic with reconfigurable interconnect
- Possibly interspersed with fixed-logic resources, e.g., processors, multipliers
Potential for very high parallelism
Historically used for prototyping and “glue logic,” but becoming more sophisticated
- DSP-oriented architecture features
- DSP-oriented tools and design libraries
 - Viterbi, Turbo, and Reed-Solomon coders and decoders, FIR filters, FFTs,...
Key DSP players: Altera and Xilinx

Altera Stratix

Up to 28 hard-wired “DSP blocks”
- 8×9-bit, 4×18-bit, 1×36-bit multiply operations
- Optional pipelining, accumulation, etc.
Three sizes of hard-wired memory blocks

© 2003 Berkeley Design Technology, Inc.
Altera Stratix

High-end, DSP-enhanced FPGAs

IP blocks
- Filters, FFTs, Viterbi decoders,...
- Nios processor
- Third-party IP, e.g., DMA controllers

DSP tools
- Parameterized IP block generators
- Simulink to FPGA link
- C+Simulink to FPGA design flow

Most family members available now
Prices begin at $170 (1 ku)
Evaluating FPGAs For Communication Infrastructure Applications

Xilinx

"Virtex" line of FPGAs

Virtex-II
- Includes array of hard-wired 18×18 multipliers plus distributed memory
- Up to 168 multipliers in biggest chip
- Most versions shipping now

Virtex-II Pro: joint effort with IBM
- Adds up to four hard-wired PowerPC 405 cores
- Up to 216 multipliers in biggest chip
- Most versions shipping now

Prices begin at $169 (1 ku)

Xilinx

Soft IP blocks; e.g.,
- Reed-Solomon encoder, Viterbi decoder, turbo decoder
- ARC processor, MicroBlaze CPU

Sophisticated "Core Generator" tool for generating parameterized IP blocks

Simulink to FPGA link via "System Generator"
Performance Analysis

- Comparing performance of off-the-shelf DSPs to that of FPGAs is tricky
- The common MMACS metric is oversimplified to the point of absurdity
 - FPGA vendors use distributed-arithmetic benchmarks that require fixed coefficients
 - MMACS metric overlooks need to dedicate resources to non-MAC tasks
 - MMACS metric ignores memory bandwidth needed to feed MACs
 - Many important DSP algorithms don’t use MACs at all!
Alternative Approach: Application Benchmarks

Use a full application, e.g., N channels of an OFDM receiver

Hazards:
- Applications tend to be ill-defined
- Hand-optimization usually required in real-world applications
 - Costly, time-consuming to implement
 - Evaluates programmer as much as processor
 - What is a “reasonable” benchmark implementation?

Solution: Simplified Application Benchmark

BDTI’s benchmark is based on a simplified OFDM receiver
- Closely resembles a real-world application
- Simplified to enable optimized implementations
- Constrained to ensure consistent, reasonable implementation practices

Benchmark implementer goals:
- Maximize number of channels
- Minimize cost per channel
Benchmark Overview

Flexibility is an asset:

- Algorithms range from table look-ups to MAC-intensive transform
- Data sizes range from 4 to 16 bits
- Data rates range from 40 to 320 MB/s
- Data includes real and complex values

```
IQ Demodulator -> FIR -> FFT -> Slicer -> Viterbi Decoder
```

Benchmark Requirements

“Pins to pins”

- Real-time throughput
- Bit-exact output data

Resource sharing is permitted

```
Channel 1
Channel 2
Channel 3
Channel 4
Channel 5
Channel 6
Channel 7
Channel 8
```

```
FIR 8 ch. -> FFT 4 ch. -> Slicer 4 ch. -> Viterbi 2 ch.
FIR 8 ch. -> FFT 4 ch. -> Slicer 4 ch. -> Viterbi 2 ch.
```
Evaluating FPGAs For Communication Infrastructure Applications

<table>
<thead>
<tr>
<th></th>
<th>Motorola MSC8101 (300 MHz)</th>
<th>Altera Stratix 1S20-6 (Preliminary)</th>
<th>Altera Stratix 1S80-6 (Preliminary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channels</td>
<td><<1</td>
<td>~10</td>
<td>~50</td>
</tr>
<tr>
<td>Cost (1 ku)</td>
<td>$116</td>
<td>$325</td>
<td>$3,480</td>
</tr>
</tbody>
</table>

From BDTI’s report, *FPGAs for DSP*.

Density Comparison

© 2003 Berkeley Design Technology, Inc.
FPGAs

Strengths and Weaknesses

† Massive performance gains on some algorithms
† Architectural flexibility can yield efficiency
 † Adjust data widths throughout algorithm
 † Parallelism where you need it
 † Massive on-chip memory bandwidth

Efficiency compromised by generality
• Embedded MAC units and memory blocks improve efficiency but reduce generality
† Potentially good cost and energy efficiency
 But absolute prices and power consumption are much higher than DSPs’

FPGAs

Strengths and Weaknesses

Development is long and complicated
Higher complexity inherent due to flexibility
Design flow is unfamiliar to most DSP engineers
† But cost and complexity is much lower than ASICs’
Development infrastructure badly lags DSPs’
DSP-oriented tools are immature
† Field reconfigurability (for some products)
† Reconfigure hardware for diverse tasks
• Xilinx has mature products, but others are playing catch-up
Evaluating FPGAs For Communication Infrastructure Applications

Why Use a DSP?

- Some applications are not amenable to FPGA implementations
 - Parallelism is sometimes inherently limited
 - Ultimate speed is not always the first priority
- FPGAs are still too expensive for terminal applications
- FPGA energy efficiency is still an unknown
- Implementing a complex algorithm is much more difficult on an FPGA than on a DSP

Grading the Alternatives

<table>
<thead>
<tr>
<th></th>
<th>DSPs</th>
<th>GPPs</th>
<th>FPGAs</th>
<th>Custom Cores</th>
<th>ASICs</th>
<th>ASSPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Effort</td>
<td>B</td>
<td>A</td>
<td>D</td>
<td>C</td>
<td>E</td>
<td>A+</td>
</tr>
<tr>
<td>Design Flexibility</td>
<td>E</td>
<td>E</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>E</td>
</tr>
<tr>
<td>Run-time Flexibility</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Top Speed</td>
<td>D</td>
<td>E</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>C</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

A = Best, E = Worst

© 2003 Berkeley Design Technology, Inc.
Evaluating FPGAs For Communication Infrastructure Applications

Future Communications Applications
Dealing with Non-ideal Channels

Multi-antenna approach exploits multi-path fading by sending data along good channels
Results in large theoretical improvements in bandwidth efficiency for fading channels
But … computationally hungry

Conclusions

High-end FPGAs can outstrip DSPs on certain DSP tasks
- Computation-intensive, highly parallelizable tasks
High-end FPGAs are expensive, but they can beat DSPs in terms of performance per dollar
DSP have the advantage in development infrastructure, time-to-market, developer familiarity.
In many applications, a heterogeneous combination of computing engines is desirable
- Expect to see more heterogeneous processor chips
The “best” architecture depends on the details of the application