Smart Processor Picks for Consumer Media Applications

Outline

• Motivation and scope
• Application structure and requirements
• Challenges
• Processor architecture options
• Selection methodology
• Conclusions
Outline

- Motivation and scope
 - Application structure and requirements
 - Challenges
 - Processor architecture options
 - Selection methodology
 - Conclusions

Motivation

- Technology creates new opportunities, e.g.,
 - Broadband internet enables video on demand
 - Low-bit rate voice codecs enable all-digital voice recorders
- “Right” processor key to product success
 - Supports, enables, desired product features
 - Defines product performance (end user experience)
 - Can simplify development effort and cost
- Range of processor options is large, dynamic, growing, making selection difficult
Scope

- Processor selection for consumer media products with varying features:
 - Application a mix of audio, video, or still image
 - MP3 players, voice recorders, cell phones
 - Still or video cameras, photo picture frames
 - Using streaming or stored content
 - Battery or line powered, portable or fixed
 - Low or high cost (relative, to consumers)
 - Input/output quality varies by application
 - E.g., lower quality audio for voice recorder, high quality audio for MP3 or DTS playback

Outline

- Motivation and scope
- Application structure and requirements
 - Challenges
 - Processor architecture options
 - Selection methodology
 - Conclusions
Software Architecture
Generic Media Application

Player
Digital Rights Management
Encoder(s) Decoder(s) I/O
Operating System

Player/ DRM Requirements

• Manages other application sub-modules (e.g., codecs), provides user interface
• Processing requirements: 1’s–10’s MIPS
• Processor features that benefit compilers are useful, e.g.,
 • Orthogonal instruction set
 • Large, linear address spaces
 • Flexible data type support
• I/O bandwidth requirements depend on:
 • Application features, peripheral mix
 • Software architecture
Audio Codec Requirements

- Memory requirements moderate
 - Audio data rates 1’s–100’s KB/s
 - Data working set size per frame small (few KB)
 - Codec memory footprint on order of 10’s KB
- Processor power required: 1’s–10’s MIPS
- Data types depend on application
 - Music applications need higher fidelity than speech (wider words, in general)
- Post-processing may be required
 - E.g., sample rate conversion, mixing

Video Codec Requirements

- Memory requirements high
 - Data rates 10’s–1,000’s of KB/s
 - Working data sets 10’s–100’s of KB
 - Memory footprints typically 10’s–low 100’s KB
- Processing power required: 10’s–100’s MIPS
- Typically, 8- or 16-bit data types sufficient
 - Latency, throughput more important
- Post-processing of frames may be required
 - Alpha blending, color conversion, scaling, ...
I/O Requirements

- Integrated I/O is an advantage
 - Basic serial & parallel (SPI, “host port”)
 - Advanced standards (Ethernet, ATA, USB, 1394)
 - Memory ports (e.g., glueless SDRAM, wireless, smart cards)
- Autonomous, intelligent I/O is even better
 - E.g., programmable communications co-processors reduce load on core processor
- Development effort
 - Peripheral programming model complexity
 - Off-the-shelf device drivers, OS support
 - Support for I/O in debug, development tools

Operating System Requirements

- OS functions command & control oriented
 - E.g., inter-task communication, scheduling
- OS overhead generally low: require few MIPS
 - Memory footprint can be large—and problematic
- Availability important, and how available
 - E.g., player, DRM, may be tied to specific OS
 - OS easier to customize if available as source
 - Cost and support issues
- To obtain good OS performance, useful processor features include:
 - Good interrupt & context switch support, low latency
 - Memory management capabilities and large address space
Smart Processor Picks for Consumer Media Applications

Outline

- Motivation and scope
- Application structure and requirements
- Challenges
 - Processor architecture options
 - Selection methodology
 - Conclusions

Processor Selection Challenges

The fundamental problem:
- Many processors to choose from
- Complex processors, applications
- Many important selection criteria to consider
- Unpredictable dynamism in processor options, application requirements
- Poor information, complex analysis
- Limited time and resources for selection

The wrong choice can be fatal for a product development effort
Smart Processor Picks for Consumer Media Applications

Outline

• Motivation and scope
• Application structure and requirements
• Challenges
• **Processor architecture options**
• Selection methodology
• Conclusions

Processor Categories

- Custom ASICs
- ASSPs
- DSP Processors
- Media Processors
- Embedded RISC CPUs
- PC CPUs

Fixed Function → Fully Programmable

Generality
ASICs

Strengths and Weaknesses

- Offers the ultimate in tailored hardware
 - Speed, energy efficiency, cost/performance, ...
 - Integration to match the product requirements
 - Design usually inflexible
- Large development costs and risks vs. off-the-shelf hardware; NRE $ increasing
 - Iteration is costly and time consuming
 - Lengthy development cycles
- Hardware/software integration and whole-chip testing are particularly challenging
 - Hardware/software partitioning typically must be done early
- Complex, costly, unreliable tools
- Vast architectural options

Example ASSP: Micronas MDE9500

- High-integration digital TV receiver
- Analog decode, DVB decryption, decode
- On-chip MPEG-2 video decoder (D1, 30 fps)
- Interfaces to other chips for, e.g., PVR functionality
- Customizable via software
 - MIPS-compatible CPU
 - Supports DVB-MHB
 - Supports Java
- Price?
ASSPs

Strengths and Weaknesses

- Often very well matched to the application
- SoCs with extensive integration
- Architecture tuned for the application
- Can yield excellent performance, cost, energy efficiency
- Ease of use
 - Reduce system development costs
 - Reduce required implementation expertise
- Often inflexible
- Limited differentiation opportunities for system designer
- Usually single-source
- Roadmap often unclear

Example: DSP Processors

Analog Devices Blackfin 21532

- Enhanced 300 MHz, 16-bit fixed-point DSP with dual-MAC units
- ADSP-2153x BDTImark2000™ score: 1,690
- Integrated peripherals target media apps (e.g., CCIR-656 port, I²S ports)
- Good 3rd party software component support
- MPEG-4 decode, simple profile, CIF: 168 MHz
- Price $10, qty 10k
DSP Processors
Strengths and Weaknesses

- DSP performance, efficiency strong compared to other off-the-shelf processors
- But not as strong as customized solutions, and may not be adequate for demanding tasks
- DSP-oriented development tools, infrastructure
- Tools not as sophisticated as those available for general-purpose processors
 - Often, poor compiler quality
- Mature technology
- Third-party DSP application software available
 - Support for non-DSP software not as strong as, e.g., RISC
- Relatively low development cost, risk

Example: Media Processors

Equator Technologies BSP-15
- General-purpose 400 MHz four-way VLIW, with extensive SIMD support
- On-chip L1 data, instruction caches
- Media-specific interfaces, co-processors
- C/C++ programming model
- Few software components available
- MPEG-4 decode (simple profile, CIF, 30 fps): 60 MHz
- Price believed to be ~$40
Media Processors
Strengths and Weaknesses

- Higher performance than most DSPs, GPPs
 - VLIW, huge register sets, wide SIMD typical
 - High performance peripherals, co-processors
- Very complex programming models
- Better DSP support in development tools, infrastructure, compared to GPPs
- Application performance compiler-dependent
 - Compilers can be poor quality
- Maturing technology—but roadmaps unclear
 - 3rd party support weaker than other CPU types
- Development cost, risk, lower than ASIC

Example: Embedded RISC CPU

PXA250
- 400 MHz, 32-bit RISC with modest DSP extensions
- BDTIMark2000™ score: 930
- MPEG-4 decode (simple profile, CIF @ 30 fps) 200-240 MHz
- 16-bit SIMD, 32-bit data types benefits media apps
- Predicated instruction execution good for control
- Good development tool support, optimized DSP software available (e.g., Intel IPP)
- Price $37.30, qty 10k
Embedded RISC CPUs

Strengths and Weaknesses

- Can have strong DSP performance
- Dynamic features complicate programming
 - Complicates optimization & ensuring real-time
- Sometimes, convoluted programming model
- Good tools, but generally lack DSP support
- 32-bit GPPs better targets for non-DSP tasks
 - E.g., TCP/IP network stacks
- Multi-vendor architectures more common
- Very good third-party software component support
- Compatibility more common
- High integration parts increasingly common

Example: PC CPU

VIA Technologies C3
- 1 GHz x86 compatible
- Moderate power consumption, cost
- SSE support for media applications, supports fixed-, floating-point types
- Access to massive x86 3rd-party software, tools base
- Familiar to software, hardware developers
- MPEG-2 decode (D1, 30 fps) using 5-15% of CPU, when using VIA Apollo CLE266 chipset
 - CPU: $39
 - chipset: $23 (qty 10k)
PC CPUs (GPPs)

Strengths and Weaknesses

- High-performance GPPs (e.g., Intel Celeron, VIA C3) can implement complex DSP tasks
 - May be as fast or faster than DSPs...
 - ...but cost & power consumption typically higher
- Dynamic features complicate optimization, real-time design
- Many options for OS, 3rd party application software
- Development tools mature, powerful
 - But typically lack features useful for media application development

Outline

- Motivation and scope
- Application structure and requirements
- Challenges
- Processor architecture options
- **Selection methodology**
- Conclusions
Processor Selection Methodology

Use a hierarchical approach to make the problem manageable:
- Determine selection criteria
- Prioritize or assign weights to selection criteria
- Use critical criteria to eliminate obviously unsuitable choices
 - Begin with classes of processors
- Evaluate and rank candidates
- Weigh trade-offs among non-critical criteria
- Iterate as necessary
 - Refine criteria and analysis of candidates

Processor Selection Criteria

Signal-Processing-Centric Concerns

- Performance on relevant DSP tasks
 - Speed
 - Memory bandwidth: on-chip, off-chip
 - Execution-time predictability
 - Dynamic features confound determinism
 - Energy consumption
- Numeric fidelity, bit-exact standards
 - Fixed-point vs. floating-point
 - Data word size(s)
 - Support for extending precision
- Memory usage
Processor Selection Criteria

Signal-Processing-Centric Concerns

- On-chip integration
 - Memory, peripherals, I/O interfaces, coprocessors
- Development effort, risk
 - DSP-oriented tools, infrastructure
 - Programming model complexity
 - Application software components
 - Tools, support (vendor, 3rd party)
 - Features useful for integration, real-time testing
 - E.g., on-chip debug support
 - Accurate cycle-count and memory profiling
 - Visibility into cache, pipeline

Processor Selection Criteria

General Concerns

- Cost
- Packaging options
- Roadmap
 - Availability; reliability of supply
 - Multi-vendor architectures a plus
 - New spins, new architectures, compatibility
 - Core version available?
- Special requirements
 - Variable-voltage operation
Assessing Performance

- Use results from relevant application modules
 - More accurate than benchmark mapping—if available
 - Use caution! The data may be misleading or incomplete.
- Use benchmarks & application profile
 - Useful when application data isn’t available
 - Uses kernel benchmark results to predict application module performance
- Use care with either approach
 - Hazards include data types, multitasking effects, ...

Assessing Performance, continued

- Core CPU performance isn’t enough
 - Must also consider memory sizes and bandwidths
 - I/O bandwidths and overheads
- Impact of software partitioning in multi-processor systems
 - Must refine software architecture to predict performance
- Dynamic features complicate performance prediction
- Assessing energy efficiency can be very difficult
Other Development Considerations

- Language support
 - Quality of C compiler; availability of C++ compiler
 - Support for assembly language optimization
- Software availability
 - Player, device drivers, operating system
- Debug/development benefit from tools with:
 - Peripheral and multi-processor simulation
 - Non-intrusive, real-time debug
- Compatibility, developer familiarity

Availability and Roadmap

- Risk
 - Is the chip available in volume today?
 - Are there second sources of the chip, or compatible chips?
 - What does the errata list look like?
- Roadmap
 - What is the vendor’s commitment to evolving the chip? E.g., improved integration, reduce cost
 - What is the vendor’s roadmap for next-generation chips? Compatibility?
 - What is your confidence that the vendor will execute on its roadmap?
Smart Processor Picks for Consumer Media Applications

Outline

• Motivation and scope
• Application structure and requirements
• Challenges
• Processor architecture options
• Selection methodology
• Conclusions

Conclusions

• Choosing a processor for a consumer media product is easy
• Choosing the best processor for your particular product is hard
 • Vast range of options
 • Many complex, competing criteria to consider
 • Poor information
 • Limited time and resources
Conclusions, cont.

- Use a hierarchical approach
 - Develop a well-defined hierarchy of product requirements
 - Start with the critical criteria, and iteratively narrow the field
 - Expect to make trade-offs
- Assessing performance is a challenge
 - Resource-hungry algorithms, cost-constrained processors
- Development-related considerations are key
 - Appropriate integration is essential to low system cost

Trends: Processors

- Consumer media applications are becoming a major focus of processor vendors
 - Expect more competitors, more options
- Technology, competition pushes performance up; price, power consumption down
 - Enabling new types of products, new levels of functionality
 - But not all processors are well matched to media processing workloads
- Increasing architectural complexity
 - Many heterogeneous multiprocessors
- Integration increasing
- Development infrastructure is a key differentiator
Trends: Development

- Products are becoming more complex
 - MP3 player vs. multimedia cell phone
- Processors are becoming more complex
- Algorithms are becoming more demanding
 - Nobody knows which ones will dominate
- Optimization continues to be essential
- Huge processor-to-processor differences in development infrastructure
 - Support for media applications
 - Off-the-shelf, optimized software components increasingly important

For More Information...

www.BDTI.com

Free Information
- BDTImark2000™ scores
- DSP Insider newsletter
- Pocket Guide to Processors for DSP
- White papers on processor architectures and benchmarking
- Article reprints on DSP-oriented processors and applications
 - EE Times
 - IEEE Spectrum
 - IEEE Computer and others
 - comp.dsp FAQ

© 2003 Berkeley Design Technology, Inc.