
Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 1

Berkeley Design Technology, Inc.
2107 Dwight Way, Second Floor

Berkeley, California 94704
USA

+1 (510) 665-1600

info@BDTI.com
http://www.BDTI.com

Optimized DSP Software � Independent DSP Analysis

© 2003 Berkeley Design Technology, Inc.

Developing A/V Software for
Consumer Media Products

(Workshop 266)

© 2003 Berkeley Design Technology, Inc. 2

Workshop Outline

The consumer media device
� The big picture

Developing A/V software
� Software subsystems
� What�s special about codec software?
� Numeric considerations
� Optimization techniques

Testing
Trends and conclusions

Outline

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 2

© 2003 Berkeley Design Technology, Inc. 3

Big Picture
Consumer media device is complex system;
several software and hardware subsystems to
integrate, e.g.,
� Software: player, codec(s), RTOS
� Hardware: GPP/DSP, DMA, I/O, memory

Consumer Media Device: Big Picture

ROM diskRAM

Source: TI

© 2001 Iomega Corporation

© 2003 Berkeley Design Technology, Inc. 4

Key Big Picture Considerations:
Processor selection
� Numeric support: floating-point or fixed-point
� Development tools, e.g., IDE, HLL compiler, assembler
� Availability of OS, off-the-shelf SW, programmers, etc.

Reference implementations
� Hardware reference design
� Software components (RTOS, codec, player)

Design, development, and testing strategies
� Optimization
� Development board for early testing of software
� How testing will be performed, what resources will be utilized, and to

what end: i.e., what�s good enough

Integration
� Hardware + software
� Real-time testing

Consumer Media Device: Big Picture

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 3

© 2003 Berkeley Design Technology, Inc. 5

Workshop Outline

The consumer media device
� The big picture

Developing A/V software
� Software subsystems
� What�s special about codec software?
� Numeric considerations
� Optimization techniques

Testing
Trends and conclusions

Outline

© 2003 Berkeley Design Technology, Inc. 6

Software Subsystems

Primary software subsystems include:

Developing A/V Software: Software Subsystems

Codec(s): MPEG-2, WMA, RV9

Real-Time Operating System: VxWorks, WinCE,Palm

Player: GUI (play, stop, rewind), host helper func’s

I/O: DAC, USB

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 4

© 2003 Berkeley Design Technology, Inc. 7

Key Software Considerations
Player
� Port to target OS/hardware platform (Just compile? Unlikely)

Codec
� Starting point?
� Floating-point to fixed-point migration (if necessary)

� Numeric considerations
� Optimize for speed, memory use, power, etc.

RTOS
� Add/remove features/device drivers

Software integration
� Player + codec(s) + RTOS

Testing
� Audio/video quality (test vectors)
� Real-time performance

Developing A/V Software: Software Subsystems

© 2003 Berkeley Design Technology, Inc. 8

Software Development
Common division of labor
� Separate teams for each subsystem

� Teams work together to integrate and test

Hot spot
� Codecs can pose significant development challenge

TEAM 1: PLAYER
Port to RTOS
Helper func’s

UI Testing

TEAM 2: CODEC
Numeric Considerations

Optimization
A/V Quality Testing

TEAM 3: RTOS
Port to Platform
Device Drivers

I/O Testing

INTEGRATION: PLAYER + CODEC + RTOS
Real-Time Performance Testing

Developing A/V Software: Software Subsystems

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 5

© 2003 Berkeley Design Technology, Inc. 9

Codec Software Development

� Extreme computational
demands

� Algorithm attributes
� Data access attributes
� Memory bandwidth

requirements
� Testing and validation

requirements

� Resource constraints
� Numeric fidelity

requirements
� Standards
� Real-time requirements
� Reliability
� Specialized and complex

processor architectures

Optimization is essential!

Not like other kinds of software development:

Developing A/V Software: What�s Special about Codec Software?

© 2003 Berkeley Design Technology, Inc. 10

Numeric Considerations

Many important and interesting topics, e.g.,
� Float-to-fixed migration
� Numeric fidelity
� Data types
� Error propagation/analysis
� Precision and dynamic range
� Block floating-point
� Floating-point emulation
� Signal scaling
� Rounding modes

(Focus topics)

Developing A/V Software: Numeric Considerations

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 6

© 2003 Berkeley Design Technology, Inc. 11

Float-to-Fixed Migration
Codec reference code available in different flavors, e.g.,
� Floating-point unoptimized
� Fixed-point unoptimized/optimized

Hardware platform usually fixed-point
� Fixed-point is cheaper, potentially faster, more energy efficient
� Few embedded processors support efficient floating-point

Floating-point reference code + fixed-point platform =
� Float-to-fixed migration

Float-to-fixed challenges
� Slows time-to-market
� Numeric fidelity tricky to maintain

Developing A/V Software: Numeric Considerations

© 2003 Berkeley Design Technology, Inc. 12

Numeric Fidelity

Definition
� Numeric fidelity = accuracy of numbers

Why do we care?
� Computer arithmetic is not error-free
� Errors usually lead to:

� Noise
� Overflow�sudden change from max to min value

� In video, e.g., white to black (bright to dark)
� In audio, e.g., pop and click

How do we maintain numeric fidelity?

Developing A/V Software: Numeric Considerations

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 7

© 2003 Berkeley Design Technology, Inc. 13

Maintaining Numeric Fidelity
Minimize error & error propagation

� Analyze where errors (could) occur, and:
� Determine tolerable level of error, e.g., one unit in last place

� Choose alternative algorithm topology
� To alter dynamic range requirements & error propagation

� Choose appropriate data types and sizes
� With sufficient dynamic range & precision for your signal

� Scale signals
� To prevent overflow or maintain precision

� Select rounding modes
� To minimize error propagation

Developing A/V Software: Numeric Considerations

© 2003 Berkeley Design Technology, Inc. 14

Data Type Choice

Understand the attributes & implications of data types

Developing A/V Software: Numeric Considerations

ExpensiveCheapProcessor cost

EasyTricky Ease of use

8 bit exp: 1500 dB16 bit: 96 dB
24 bit: 144 dB
32 bit: 192 dB

Dynamic range

24-bit mantissa: 1 part
in 16M

16 bit: 1 part in 64K
24 bit: 1 part in 16M
32 bit: 1 part in 4G

Precision

Floating point: IEEE-754 SPFixed point

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 8

© 2003 Berkeley Design Technology, Inc. 15

Data Types: Fixed-Point

Signal
Power (dB)

SNR (dB)

Overload
Region

0-90

90

0

Granular-
Noise

Region High-
Quality
Region

Developing A/V Software: Numeric Considerations

16-bit fixed-point

S I I I I I I I I I I I I I I I S F F F F F F F F F F F F F F F

FractionalInteger

S I I I F F F F F F F F F F F F
Mixed

Precision decreases as signal level decreases

© 2003 Berkeley Design Technology, Inc. 16

Data Types: Fractional Numbers

Sign Bit
½
¼

⅛

10100.625

00100.5

11000.375

01000.25

00000

10000.125

01100.75

11100.875

Frac
Val=

b0b1b2Sign
Bit: S

4-bit fractional value

Developing A/V Software: Numeric Considerations

Signals are often
represented as a
fraction in a fixed-
point number:
S.3 or Q.3

b0S b2 b1

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 9

© 2003 Berkeley Design Technology, Inc. 17

Developing A/V Software: Numeric Considerations

Data Types: Fractional Add, Multiply
Fractional add (N + N ≥ N-bit):
� Behaves the same as integer add
� Generates no error, if no overflow

x

Multiply (N x N bits ≥ N bit)

+

short X, Y, Z;

Z = ((long) X * (long) Y) >> 15;

short X, Y, Z;

Z = X + Y;

S
S

SS

Fractional Result:
upper word

Integer Result:
lower word

© 2003 Berkeley Design Technology, Inc. 18

Data Types: Floating-Point

Precision roughly constant over dynamic range

Signal Power
(dB)

SNR (dB)

Overload
Region

-1500

144

0

High- Quality Region

0

6 dB

Developing A/V Software: Numeric Considerations

Granular-
Noise

Region

S Exp Mantissa 32-bit floating-point

23 bits8 bits

Value = S x (1 + Mantissa) x 2Exponent

1 bit

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 10

© 2003 Berkeley Design Technology, Inc. 19

Numeric Support
Fixed-point DSPs typically support fractional and integer
fixed-point data types in hardware
� Fractional multiplication includes shift

Fixed-point GPPs typically do not support fractional data
types in hardware
� Shift must be explicit

GPPs usually 32-bit, DSPs usually 16-bit, with some 32
bit support

Fixed-point DSPs and GPPs can emulate floating-point,
but usually at a high MIPS cost

Floating-point processors are more expensive, use more
energy, and have slower clock rates

No fractional support in ISO/ANSI C (coming soon?)

Developing A/V Software: Numeric Considerations

© 2003 Berkeley Design Technology, Inc. 20

Optimization
Possible performance metrics:
� Execution speed

� Processor-independent/dependent optimizations
� High level language (HLL) optimizations
� Hand code assembly for best performance

� Memory access optimizations
� Avoid cache, or L1, “thrashing”

� Memory usage (code size and data size)
� May conflict with optimizations for speed

� Power consumption
� Minimize off-chip memory accesses

→→→→ Profile →→→→ Analyze →→→→ Optimize

Developing A/V Software: Optimizations

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 11

© 2003 Berkeley Design Technology, Inc. 21

Profiling Goal: ID S-rate Operations
80/20 Rule:
� 20% of software responsible for 80% of execution time, and

vice-versa
Functions can be classified based on invocation rate:

At each level:
� Rate differs by 2 to 3 orders of magnitude vs. adjacent levels
� Execution cost increases by 2 to 3 orders of magnitude

I-rate and K-rate efficiency not too important, but S-rate efficiency
very important

Developing A/V Software: Optimizations

~10,000 to 100,000 times per secondS-rate (Sample rate)

~10 to 1,000 times per secondK-rate (Control rate�parameter
updates, etc.)

≤ 1 time per secondI-rate (Initialization rate)
Invocation rateClass

© 2003 Berkeley Design Technology, Inc. 22

T-1

y[n]=ΣΣΣΣx[n-k]h[k]
k=0

S-rate Operation: FIR Filter Kernel

C implementation of FIR kernel
N=40;

T=16;

for (n=0; n<N; n++) {

for (k=0,SUM=0; k<T; k++) {

SUM += x[n-k] * h[k];

}

y[n] = SUM;

}

Developing A/V Software: Optimizations

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 12

© 2003 Berkeley Design Technology, Inc. 23

B |L1.80|

|L1.20| MOV a4,#0

MOV lr,#0

B |L1.60|

|L1.32| SUB v1,ip,a4

MOV v1,v1,LSL #1

LDRSH v1,[a1,v1]

MOV v2,a4,LSL #1

LDRSH v2,[a2,v2]

ADD a4,a4,#1

MLA lr,v2,v1,lr

|L1.60| CMP a4,v3

BLT |L1.32|

MOV a4,ip,LSL #1

STRH lr,[a3,a4]

ADD ip,ip,#1

|L1.80| CMP ip,v4

BLT |L1.20|

Analysis: Compiled ARM7 FIR Filter
ARMCC compiler known
to be very good.

N=40;

T=16;

for (n=0; n<N; n++) {

for (k=0,SUM=0; k<T; k++) {

SUM += x[n-k] * h[k];

}

y[n] = SUM;

}

=

Developing A/V Software: Optimizations

© 2003 Berkeley Design Technology, Inc. 24

2 instruction load sequence

Single instruction equivalent:
LDRSH v2, [a2, a4, LSL #1]

Analysis: Compiled ARM7 FIR Filter

4 branch instructions

B |L1.80|

|L1.20| MOV a4,#0

MOV lr,#0

B |L1.60|

|L1.32| SUB v1,ip,a4

MOV v1,v1,LSL #1

LDRSH v1,[a1,v1]

MOV v2,a4,LSL #1

LDRSH v2,[a2,v2]

ADD a4,a4,#1

MLA lr,v2,v1,lr

|L1.60| CMP a4,v3

BLT |L1.32|

MOV a4,ip,LSL #1

STRH lr,[a3,a4]

ADD ip,ip,#1

|L1.80| CMP ip,v4

BLT |L1.20|

18 instructions in kernel

Developing A/V Software: Optimizations

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 13

© 2003 Berkeley Design Technology, Inc. 25

Analysis:
Algorithmic Transformation: # 1

Reorder coefficients: single index for x & h

x[n-k]

h[k]

x[i]

h[i]

|L1.32| SUB v1,ip,a4

MOV v1,v1,LSL #1

LDRSH v1,[a1,v1]

MOV v2,a4,LSL #1

LDRSH v2,[a2,v2]

ADD a4,a4,#1

MLA lr,v2,v1,lr

|L1.60| CMP a4,v3

BLT |L1.32|

|L1.32| SUB v1,ip,a4

MOV v1,v1,LSL #1

MOV v2,a4,LSL #1

LDRSH v1,[a1,v2]

LDRSH v2,[a2,v2]

ADD a4,a4,#1

MLA lr,v2,v1,lr

|L1.60| CMP a4,v3

BLT |L1.32|

Developing A/V Software: Optimizations

© 2003 Berkeley Design Technology, Inc. 26

Count down rather than up, branch if index ≥≥≥≥ 0

x[i]

h[i]

x[i]

h[i]

|L1.32| SUB v1,ip,a4

MOV v1,v1,LSL #1

MOV v2,a4,LSL #1

LDRSH v1,[a1,v2]

LDRSH v2,[a2,v2]

ADD a4,a4,#1

MLA lr,v2,v1,lr

|L1.60| CMP a4,v3

BLT |L1.32|

|L1.32| SUB v1,ip,a4

MOV v1,v1,LSL #1

MOV v2,a4,LSL #1

LDRSH v1,[a1,v2]

LDRSH v2,[a2,v2]

SUBS a4,a4,#1

MLA lr,v2,v1,lr

|L1.60| CMP a4,v3

BPL |L1.32|

Developing A/V Software: Optimizations

Analysis:
Algorithmic Transformation: # 2

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 14

© 2003 Berkeley Design Technology, Inc. 27

Implementing Optimizations
Combining:
� Branch reduction
� Single index off-set load
� Re-order coefficients
� Count down loop

Loop:

add r7, r2, r4, lsl #2 ; r7 points to in(i)

mov r6, r5 ; j = ntaps-1

mov r10, #0 ; sum = 0

innerLoop:

ldr r8, [r7, r6, lsl #2] ; r8 = in(i+j)

ldr r9, [r3, r6, lsl #2] ; r9 = coef(j)

mla r10, r8, r9, r10 ; sum += in(i+j)*coef(j)

subs r6, r6, #1 ; j--

bpl innerLoop ; loop until j < 0

str r10,[r1, r4, lsl #2] ; out(i) = sum

subs r4, r4, #1 ; i--

bpl loop ; loop until i < 0

Developing A/V Software: Optimizations

11 instructions in total,
compared to 18 in compiled
code: ~40% less

© 2003 Berkeley Design Technology, Inc. 28

Memory Access Optimization

Video Processing
� Video frame much bigger than typical L1

memory (cache or SRAM)

� Simplified frame buffer and L1 memory

Developing A/V Software: Optimizations

Video Frame L1

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 15

© 2003 Berkeley Design Technology, Inc. 29

Memory Access Optimization

Default processing sequence
� Operation 1 on entire frame
� Operation 2 on entire frame
� Etc.

Developing A/V Software: Optimizations

L1 Op 1Video Frame

© 2003 Berkeley Design Technology, Inc. 30

Memory Access Optimization

Load 2nd block of frame data
� Each cache line misses�very expensive�or
� DMA overhead for SRAM L1

Developing A/V Software: Optimizations

L1 Op 1Video Frame

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 16

© 2003 Berkeley Design Technology, Inc. 31

Memory Access Optimization

Load 3rd block of frame data
� Again, cache misses or DMA overhead
� Note: still Operation 1

Developing A/V Software: Optimizations

L1 Op 1Video Frame

© 2003 Berkeley Design Technology, Inc. 32

Memory Access Optimization

Load Nth block of frame data
� Have moved entire frame in and out of L1

� Slow and power-hungry

Developing A/V Software: Optimizations

L1 Op 1Video Frame

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 17

© 2003 Berkeley Design Technology, Inc. 33

Memory Access Optimization

Repeat block load and process pattern for
� Operation 2
� Ratio of memory access overhead to processing

overhead very high

Developing A/V Software: Optimizations

L1 Op 2Video Frame

© 2003 Berkeley Design Technology, Inc. 34

Memory Access Optimization

Optimization: process subset of frame
� Subset stays resident in L1, cutting external memory

accesses

Developing A/V Software: Optimizations

L1 Op 2

Op 1

Op N

Video Frame

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 18

© 2003 Berkeley Design Technology, Inc. 35

Memory Access Optimization

Load next block of frame data, etc.
� Ratio of memory access overhead to processing

overhead much lower

Developing A/V Software: Optimizations

Op 2

Op 1

Op N

L1Video Frame

© 2003 Berkeley Design Technology, Inc. 36

Workshop Outline

The consumer media device
� The big picture

Developing A/V software
� Software subsystems
� What�s special about codec software?
� Numeric considerations
� Optimization techniques

Testing
Trends and conclusions

Outline

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 19

© 2003 Berkeley Design Technology, Inc. 37

Testing
Hardware/development platform
� Vast data I/O capability

� Capture digital output for testing

Codec software
� Audio and video quality

� Test vectors, reference codecs
� Operating modes

� Sample rates, frame sizes, bit rates, etc.

System level (hardware + software)
� Real-time performance under worst cases

� Data-dependent execution time
� Dynamic processor features
� Interrupts enabled

Testing

© 2003 Berkeley Design Technology, Inc. 38

Hardware/Development Platform
A/V codecs consume and produce vast amounts
of data:
� Compressed bit streams up to ~10 Mbps
� Uncompressed output streams up to 120

Mbps

Simulation model usually far too slow
� Real hardware is needed

Development board must have means to
� Supply large test vectors
� Capture potentially even larger output

Testing

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 20

© 2003 Berkeley Design Technology, Inc. 39

Codec Software: A/V Quality

Difficult to measure quality in context of �lossy�
compression algorithms
� Intentionally not bit-exact

Quality measured via reference codec + test
vectors
� Supplied test vectors may not adequately

stress fixed-point implementations
� May need to create tests that exercise full

potential dynamic range of algorithm
� Requires in-depth understanding of underlying

algorithm

Testing

© 2003 Berkeley Design Technology, Inc. 40

Codec Software: Operating Modes

A/V Codecs typically have several operating modes
� MPEG-1 Layer III audio has:

� 14 bit rates
� Three sampling rates
� Four channel configurations

All valid combinations must be thoroughly tested
� Standard reference test vectors probably not

sufficient
� MPEG-1/2 Layer III audio has only one �compliance� test

vector, so test vectors must be created

Testing

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 21

© 2003 Berkeley Design Technology, Inc. 41

System Level: Real-Time

Real-time performance is not optional
Processor is often underpowered
� Careful codec optimizations can pull underachievers

up to real-time performance
� But must verify worst-case performance

Testing

Start
Processing

Real-Time Deadline to
Complete Processing

TimeProcessing

© 2003 Berkeley Design Technology, Inc. 42

System Level: Worst-Case Testing
Most demanding operating mode
� Highest bit rate, sample rate, most channels
� Interrupts enabled and active (UI and I/O)

Most demanding data
� Codecs have data dependent execution paths
� Processors often have data dependent operations,

e.g., multiplication

Worst case real-time stress requires:
� Test vector which ensures worst case execution path
� Worst case inputs to data dependent operations

Testing

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 22

© 2003 Berkeley Design Technology, Inc. 43

Workshop Outline

The consumer media device
� The big picture

Developing A/V software
� Software subsystems
� What�s special about codec software?
� Numeric considerations
� Optimization techniques

Testing
Trends and conclusions

Outline

© 2003 Berkeley Design Technology, Inc. 44

Conclusions
Successful A/V codec software development:

� Demands knowledge of the application, algorithms,
and processor, and mastery of a wide range of skills
and tools

� Requires careful selection of numeric data types and
close attention to numeric fidelity

� Typically requires aggressive optimization in order to
meet tough real-time deadlines

� Requires a well-thought-out testing strategy!

Trends & Conclusions

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 23

© 2003 Berkeley Design Technology, Inc. 45

Trends

Processors are getting faster & compilers are
getting better

� But newer A/V codecs are more demanding
than previous generations

Optimized software libraries are more common

� Signal processing function level, e.g., FIR,
IDCT

� Application level, e.g., A/V codec

Trends & Conclusions

© 2003 Berkeley Design Technology, Inc. 46

Trends

Heterogeneous processors:

� Processor core + programmable logic
� Multi-processor SoCs

Heterogeneous processors may change how
application workload is handled

� Proposal: off-load compute-intensive S-rate
operations to custom logic or specialized DSP

� Reality: inter-processor communications and
synchronization load can be deadly

Trends & Conclusions

Developing A/V Software for Consumer Media Products

© 2003 Berkeley Design Technology, Inc.

Embedded Systems Conference April 2003Page 24

© 2003 Berkeley Design Technology, Inc. 47

Resources:
Processor Architecture/Software Optimization/OS:
Computers as Components�Principles of Embedded
Computing System Design, Wayne Wolf

Numerics:
Digital Signal Processing, Alan V. Oppenheim & Ronald
Schafer

Audio/Video/Speech Compression:
Digital Compression for Multimedia�Principles and
Standards, Jerry D. Gibson, Toby Berger, Tom
Lookabaugh, Dave Lindbergh, Richard L. Baker

Trends & Conclusions

© 2003 Berkeley Design Technology, Inc. 48

For More Information…
www.BDTI.com
Free Information
� White papers/presentation slides on

� DSP software optimization
� Streaming media implementation
� Processor architectures and performance
� Digital audio compression

� Article reprints on DSP-oriented
processors and applications
� EE Times
� IEEE Spectrum
� IEEE Computer and others

� comp.dsp FAQ

2001 Edition

