

Application Needs Key Considerations

- Speed
- Energy efficiency
- System cost
 - Chip cost
 - Memory use
 - Size and integration

- Development cost and risk
 - Tools and support
 - Compatibility
 - Installed base
 - Roadmap
 - Shared vs. proprietary architecture

In varying combinations, with diverse algorithms

DSP Software Development Increasingly Important Not like other kinds of SW development. Why? Resource-hungry, complex algorithms Severe cost limitations Numeric fidelity Hard real-time constraints Optimization is essential Often, specialized and/or complex processor architectures

• Testing challenges

DSP Software Development Key Considerations

• The bare essentials:

- Assembler, linker
- Instruction set simulator
- Scan-based emulator
- **Code generation, i.e., C compiler**
- Debugging tools
- Profiling tools

• Increasingly important:

- Software libraries
- Real-time operating systems

Cores vs. Chips

- Synthesizable cores
 - Map into chosen fabrication process
 - Speed, power, and size vary
 - Choice of peripherals, etc.
 - Requires extensive hardware development effort
- Off-the-shelf chips
 - Highly optimized for speed, energy efficiency, and/or cost (depends on chip)
 - Limited performance, integration options
 - Tools, 3rd-party support often more mature

Modern Conventional DSPs

- Circa ~1986-1996
- Fixed-point: mostly 16-bit
 - Some 20-, 24-bit
- Floating-point: 32-bit
- 1 instruction/cycle
- 1 MAC/cycle
- On-chip SRAM, serial ports, host port, timers, DMA, ...
- Typically 75-160 MIPS

10

- 2-3 synchronous serial ports, parallel port
- Bit I/O, timer
- DMA
- Cheap (100 MHz '5402 is ~\$5 qty 10K)
- Low power (60 mW @ 1.8 V, 100 MHz)

TMS320C54xx			
Prog/Data ROM Instruction Bus Data Buses	Memory Prog/Data SARAM Prog/Data DARAM (1 x 16 bits) (2 x 16 bits read, 1 x 16 bits v (4 x 16 bits)	Prog. Ctrl. Unit	Data (16-bit) Addr. (16-bit
Data Path MAC ALU Shifter	Addr. Gen. Addr./Data Registers (2)		to 23-bit) 13

Conventional DSPs Strengths and Weaknesses

- ↑ Cheap and fairly memory efficient
- ↑ Good speed and energy use...
 - ...but not fast enough for demanding apps
- Limited integration
- ↑ Good DSP tools and 3rd-party support
- ↑ Huge installed base (in some cases)
- Uncertain roadmaps...
 - ...but sometimes compatible with nextgeneration DSPs
- Poor support for non-DSP tasks

Enhanced Conventional DSPs

- Additional execution units
- Complex, compound instructions
- Mixed-width instructions
- Hardware accelerators or execution units for key DSP functions (Viterbi,...)
- Expanded buses
- SIMD operations
- Even more SRAM, on-chip peripherals, I/O interfaces

Enhanced Conventional DSPs

Strengths and Weaknesses

- Significant improvements in speed, energy use, and memory use...
 - ...but still not fast enough for the most demanding apps
- ↑ Still fairly inexpensive
- ↑ Better integration
 - ...but usually not licensable
- Poor support for non-DSP tasks
- ▲ Good DSP tools and 3rd-party support
- Look and feel of earlier generations (and sometimes compatibility)

Embedded Systems Conference © 2002 BDTI

www.BDTI.com

March 2002 Page 11

Multi-Issue Architectures RISC-Based Approach

- Execute multiple instructions/cycle
 - More parallelism
- Use simple, regular instruction sets
 - Simpler decoding, faster execution
 - Faster clock
 - Better compiler target
- More parallelism, higher clocks → faster processors
- Better compiler targets → simplified software development

VLIW-Based DSPs

- Speed-focused
- Independent execution units
- Simple, RISC-like instructions
- Regular, orthogonal instruction sets
- Large, uniform register sets
- VLIW DSPs sometimes feature
 - Deep pipelines, latencies
 - Predicated execution

Embedded Systems Conference © 2002 BDTI

Superscalar DSPs

- Resemble high-end CPUs
- Run-time instruction scheduling
 - Possibly other dynamic features, e.g., branch prediction, caches
- Lots of parallelism
- Simple, RISC-like instructions
- Regular, orthogonal instruction sets
- Examples: LSI Logic ZSP400, Lexra LX5280, 3DSP SP-5

LSI Logic ZSP400 A 4-Way Superscalar DSP Core

- 16-bit, fixed-point DSP
- 16-bit RISC-like instructions
 - Up to four dynamically scheduled instructions per cycle
 - Small instruction and data buffers
- Two MAC units, two ALU/shifter units
 - Limited SIMD support
 - MACs can be combined for 32-bit operations
 - ALUs also function as AGUs, shifters
- Licensable synthesizable core; also used by LSI Logic in chips
- LSI402ZX shipping at 200 MHz in 0.18 μm

Embedded Systems Conference © 2002 BDTI

DSP-Enhanced GPPs, Hybrids

- Nearly all vendors of GPPs (both embedded processors and CPUs) now offer DSP-enhanced versions because
 - Processor workloads shifting to DSP
 - DSPs and GPPs often found together (e.g., in cell phones)
 - Integration is imperative

Intel's MMX, SSE, and SSE2

• MMX

- Fixed-point: 8x8, 4x16, 2x32, and 1x64
- Non-orthogonal instruction set
- SSE and SSE2
 - Floating-point: 1x32, 4x32, 1x64, and 2x64
 - Eight new 128-bit registers
 - Additional integer MMX operations
 - Relatively orthogonal instruction set
 - No MAC instruction

ARM ARM9E The ARM9 Gets DSP Extensions • Faster, wider multiplier hardware

- 32 x 16 replaces 32 x 8 of ARM9
 - Adds 16 x 16 → 32 and 16 x 32 → 32 with single-cycle throughput
 - Retains 32 x 32 → 64

Improved support for 16-bit data

- New multiply instructions treat 32-bit registers as two 16-bit values
- ALU instructions can access register halves via "free" shifts
- No DSP-oriented addressing
- 200 MHz in 0.18 μm
 - Fabricated by LSI Logic

- ↑ DSP performance can be as strong as DSP processors
- Often weak on integration
 - Particularly high-performance CPUs
- ↑ General-purpose tools, infrastructure strong
- DSP-oriented tools, infrastructure may be weak
- ↑ Widely known, large installed base
- Compatibility (in many cases) with previous generations

GPPs and Hybrids Strengths and Weaknesses

- Higher energy use
- Often higher cost (mostly high-end CPUs)
- Dynamic features can complicate real-time operation (especially in high-end CPUs)
 - Complicates ensuring real-time behavior
 - Complicates software optimization
- Sometimes, convoluted programming model
- ↑ 32-bit GPPs are often easier software targets for many non-DSP tasks (e.g., network stacks)

www.BDTI.com

Conclusions Comparing Performance

- Performance is more than speed
 - Cost/performance, energy efficiency, memory use,...
- Performance is hard to measure
 - Use appropriate benchmarks
- Consider all the options
 - Increasing performance overlap between dissimilar architectures
 - Alternatives increasingly viable
- Application requirements and processor performance are both moving targets

44

Conclusions Comparing System Costs

- Software development
 - Tools, especially compilers
 - Packaged application modules
 - GPP-like general software support
 - Compatibility increasingly important
- Integration, system-on-chip design
 - Increasing application content in chips, in chip-vendor-supplied software
 - Customizability

For More Information... www.BDTI.com

- White papers on processor architectures and benchmarking
- Article reprints on DSP-oriented processors and applications
 - Microprocessor Report
 - ♦ IEEE Spectrum
 - IEEE Computer and others
- comp.dsp FAQ
- BDTImark2000[™] scores

Embedded Systems Conference © 2002 BDTI

