Evaluating DSP Performance

- Essential part of processor selection
- Becoming more difficult as processor architectures diversify
- Are vendor performance claims credible?
Approaches to Evaluating DSP Performance

Candidate approaches:

- **Simplified metrics**
 - E.g., MIPS (Millions of Instructions Per Second), MOPS, MMACS

- **Complete DSP applications**
 - E.g., v.90 modem

- **DSP algorithm “kernel” benchmarks**
 - E.g., FIR filter, FFT

What's Wrong with MIPS?

MIPS and MFLOPS (Millions of Floating-Point Operations per Second) are frequently used as shorthand for processor speed. But are they really meaningful?

Two instructions from different processors:

DSP16210

\[A0 = A0 + P0 + P1 \]
\[P0 = Xh \times Yh \]
\[P1 = Xl \times Yl \]
\[Y = *R0++ \]
\[X = *PT0++ \]

TMS320C6201

\[ADD \quad A0, A3, A0 \]
Benchmarking Full Applications

Why not just use a full DSP application, like a v.90 modem or AC-3 decoder?

This approach is common in PC systems (e.g., SPEC) but is not appropriate for DSP benchmarking because:

- Applications tend to be ill-defined
- Hand-optimization in assembly language is usually required in real-world applications
 - Costly, time-consuming to implement
 - Evaluates programmer as much as processor
- Measures system, not just processor

Algorithm Kernel Benchmarks

- DSP algorithm kernels are the most computationally intensive portions of DSP applications
- Example algorithm kernels include
 - FFTs
 - IIR filters
 - Viterbi decoders
- Application-relevant algorithm kernels are strong predictors of overall performance
Vendor Benchmarks

- Many processor vendors provide DSP algorithm kernel benchmark results for their own processors, but in general
 - Benchmarks are not standardized across vendors
 - Results are not independently verified
 - Clock speeds are often projected

- These results are then often misused, for example,
 - Comparing their fastest chip to the slowest from another vendor
 - Comparing vaporware to real silicon
 - Presenting cycle counts as an indication of performance
 - Cherry-picking benchmark results

BDTI Benchmarking Methodology

- BDTI uses algorithm kernel benchmarks
 - Rigorously defined
 - Hand-optimized in assembly
 - All implementations follow the same rules
 - The most important rule is that only “realistic” optimizations are allowed

- Each benchmark is independently verified for:
 - Performance
 - Functionality
 - Optimality
 - Conformance to benchmark spec
Separating Reality from Hype

We will use the BDTI Benchmarks to evaluate vendor performance claims regarding:

- Speed (execution times)
- Energy Efficiency
- Memory Use

Texas Instruments TMS320C62xx

- First commercial VLIW-based DSP
- Introduced in 1997
- 8-issue with 8 execution units
- 11-stage pipeline

At its introduction, projected to operate at 200 MHz (1600 MIPS)
"10x the Performance of Available DSPs"

- TI's February 1997 slideshow describing the TMS320C62xx

- Based on projected speed of 200 MHz (1600 MIPS); initial samples ran at 120 MHz

Real Block FIR Benchmark

Lower is faster

Execution Time (µs)

- ADSP-21060C 66 MHz
- DSP56301 120 MHz
- DSP56303 100 MHz
- TMS320VC549 100 MHz
- TMS320C6201 200 MHz
Separating Reality from Hype in Processors' DSP Performance

Total Normalized Execution Time

<table>
<thead>
<tr>
<th>Processor</th>
<th>Total Normalized Execution Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADSP-21860 C</td>
<td>8</td>
</tr>
<tr>
<td>DSP1600</td>
<td>6</td>
</tr>
<tr>
<td>DSP9603</td>
<td>5</td>
</tr>
<tr>
<td>TMS320VC549 100 MHz</td>
<td>4</td>
</tr>
<tr>
<td>TMS320C6201 200 MHz</td>
<td>2</td>
</tr>
</tbody>
</table>

Lower is faster

Analysis of Results

- The TMS320C62xx was the fastest DSP processor at the time it was introduced.
- However, its speed was overstated:
 - At 200 MHz, its speed would have been 4-6 times faster than the fastest DSPs available at that time.
 - At 120 MHz, its speed was only 2-3 times faster than the fastest DSPs available at that time.
- MIPS rating was highly misleading.
Analog Devices ADSP-2116x

- Introduced in June 1998
 - Expected to sample at 100 MHz by 4Q98; first silicon delayed by about a year (and derated by 20 MHz)
- SIMD-enhanced version of ADSP-2106x (SHARC)
 - Duplicated data path of SHARC, widened buses

Twin data paths

- Assembly-source-code compatible with SHARC
- Reoptimization needed for SIMD
- First family member: ADSP-21160

ADSP-2116x

“... as much as ten times higher performance than [the ADSP-2106x]”

- June 1998 ADI press release

“0.46 µs FFT”
(Benchmark result for 1024-point FFT, apparently based on 200 MHz clock)

- June 1998 ADI press release
Separating Reality from Hype in Processors' DSP Performance

256-Point FFT Benchmark

Lower is faster

Analysis of Results

To achieve 10x the performance of the ADSP-2106x in this benchmark, the ADSP-2116x would have to operate at roughly 400 MHz, four times the current clock speed.
StarCore SC140 Core

- Up to 6 instructions per cycle
 - Fewer than the 'C62xx, but more powerful
 - 4 MACs/cycle vs. 2 for the 'C62xx
- Short (5-stage) pipeline

SC140

“The SC140 boasts the highest performance of any DSP core to date”

- April 1999 StarCore backgrounder describing the SC140 architecture

- Based on 300 MHz, 3000 “MIPS”
Separating Reality from Hype in Processors' DSP Performance

Total Normalized Execution Time

<table>
<thead>
<tr>
<th></th>
<th>Total Normalized Execution Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMS320C6203</td>
<td>300 MHz</td>
</tr>
<tr>
<td>SC140</td>
<td>300 MHz</td>
</tr>
</tbody>
</table>

Lower is faster

Analysis of Results

- At the time the SC140 was first fabricated, it was in fact the highest performance mainstream DSP core.
Texas Instruments TMS320C64xx

- Upgrades the TMS320C62xx
- Announced in February 2000, with a projected speed of 1.1 GHz
- Still an 8-issue architecture, but each instruction and execution unit can do more
- New instructions support SIMD
 - Including four 16x16 or eight 8x8 multiplies per cycle
- Object-code compatible with 'C62xx
- Uses dynamic caches

TMS320C64xx

"10 times the performance of today’s fastest DSP"

- February 2000 TI press release

- Based on 1.1 GHz; initial chips sampling at 600 MHz
Real Block FIR Benchmark

Execution Time (ms)

Lower is faster

TMSC320C6203 300 MHz
TMSC320C64xx-C 600 MHz
MSC8101 300 MHz

Two-Biquad IIR Benchmark

Execution Time (µs)

Lower is faster

TMSC320C6203 300 MHz
TMSC320C64xx-C 600 MHz
MSC8101 300 MHz
Analysis of Results

- At 600 MHz with L1 cache preloaded, the TMS320C64xx is about
 - 2.5 times faster than the TMS320C6203
 - 1.5 times faster than SC140
- To achieve ten times the speed of the TMS320C6203, the TMS320C64xx would have to operate at roughly 2.5 GHz and avoid L1 cache misses
Micro Signal Architecture

- Initial core ("Frio") has two data paths
- 16-, 32-, and 64-bit mixed-width instruction set
- "Dynamic power management"
 - Initial chips operate between 300 MHz at 1.5 V and 100 MHz at 0.9 V
- MMU and mode-dependent instructions
- Memory configurable as SRAM or as cache

Per Cycle Benchmarks are unbeaten by competitors...
...20% to 80% fewer cycles required

- December 2000 ADI/Intel MSA launch slides
Separating Reality from Hype in Processors' DSP Performance

Total Normalized Cycle Counts

- Lower is better

![Graph showing normalized cycle counts for different processors](image1)

Single Sample FIR Benchmark

- Lower is better

![Graph showing cycle count for different processors](image2)
Analysis of Results

- The MSA cycle counts are about
 - 50% lower than those of the DSP5685x
 - 10% lower than those of the SC110
 - 15% lower than those of the TMS320C55xx
- The MSA cycle counts are not consistently lower than those of the SC110 or the TMS320C55xx

Energy Consumption

- Power vs. energy
 - Energy considers both instantaneous power and the time required to complete a task

\[
\text{Energy} = \int_{0}^{T} \text{Power} \, dt
\]

- Vendors quote power, but we evaluate energy, since it is typically more useful
Texas Instruments TMS320C55xx

- Introduced in Feb 2000, with projected speed of 160-200 MHz—currently sampling at 200 MHz

- Based on TMS320C54xx, but with significant enhancements
 - Dual-issue VLIW
 - Dual MAC units

- Complex, compound instructions
 - Assembly source code compatible with ‘C54xx
 - Mixed-width instructions: 8- to 48-bit

“... requires only 15 percent of the power of the most power-efficient DSP available today”

- February 2000 TI press release

- Voltage not specified
Analysis of Results

- Current 1.6-volt TMS320C55xx chips are not dramatically more energy efficient than TMS320C54xx chips.
- Motorola's DSP56854 comes close to energy efficiency of TMS320C5510.
- MSC8101 is much more energy efficient than the TMS320C55xx.
Memory Usage

Why is memory use important?
- Chip, system cost
- Energy consumption
- Speed

Factors that affect memory use results
- Instruction word width
- Instruction-set style
- Instruction-set efficiency for task at hand
- Data word size

ROM vs. RAM usage

Memory Usage Claims

- TMS320C55xx: “30% less compiled code size per function for control code (compared to the ‘C54xx)”
 - February 2000 TI slideshow describing the TMS320C55xx

- TMS320C64xx: “25% smaller code than [the TMS320C62xx]”
 (in compiled code; 15% from architectural improvements)
 - November 1999 TI slideshow describing the TMS320C64xx

- SC140: “the SC140's code is more than twice as dense as competing high-performance DSPs”
 - StarCore backgrounder describing the SC140 architecture

- MSA: “code density comparable to ARM7 Thumb”
 - December 2000 ADI/Intel MSA launch slideshow
Separating Reality from Hype in Processors' DSP Performance

Control Benchmark

![Control Benchmark Graph]

Real Block FIR Benchmark

![Real Block FIR Benchmark Graph]
Analysis of Results

- Control Benchmark
 - ‘C55xx uses 35% less memory than ‘C54xx
 - ‘C64xx uses 15% less memory than ‘C62xx
 - SC140 uses about half as much memory as ‘C64xx and ‘C62xx
 - MSA memory use is similar to ARM7 Thumb
- Block FIR Filter benchmark
 - ‘C64xx and ‘C55xx both use more memory than predecessors; this will be typical in DSP algorithm code

Conclusions

- Be wary of vendor performance claims, particularly those related to speed and power consumption
- MIPS and MOPS are no longer meaningful
- Benchmarks are a key tool for assessing performance, but can be misused
- Comparing future processors with today's competitors is misleading
 - Competitor speeds may increase in the interim
 - Vendors may have difficulty producing full-speed silicon on time (or at all)
For More Information...
www.BDTI.com

- White papers on DSP processor architectures and benchmarking
- Article reprints on DSP-oriented processors and apps
 - *Microprocessor Report*
 - *IEEE Spectrum*
 - *IEEE Computer* and others
- `comp.dsp` FAQ
- BDTI mark2000™ scores