Implementing Embedded Streaming Media: 10 Secrets of Success

Jeff Bier
Berkeley Design Technology, Inc. (BDTI)
bier@BDTI.com
www.BDTI.com
© 2001 BDTI

OUTLINE

• Introduction
• Applications
• Formats and Standards for Streaming Audio and Video
• Hardware Considerations
• Software Considerations
• Additional Considerations
• Conclusions
INTRODUCTION

Challenges of Implementing Streaming Media Products

- Evolving technologies
 - Chips, communications standards
 - Compression formats, rights management
- Competitive market
 - Many players, big and small
 - Overlap between similar applications
- Many complex design considerations
 - Quality and feature selection
 - Cost and time-to-market constraints
Characteristics of (Strict) Streaming Media

- Media carried in packets
- Packets may arrive out of order
- Packets may not arrive at all!
- Network or some intermediary *not designed to carry data reliably in real-time*
- Starts playing before the entire audio/video clip is downloaded

Typical Big Picture (Expanded)
APPLICATIONS

Internet Applications

- Audio via Internet becoming ubiquitous
- Video via Internet gaining popularity
- Communications products incorporating streaming media
 - E.g., Nokia 9210 Communicator
- By 2003, 50% of Internet access may be via non-PC devices (CEMA)
- Streaming audio may displace traditional radio
Set-Top Boxes

- Devices providing interface to cable, other services
- New applications emerging
- Today, categories overlap:
 - Home theater functions
 - Direct broadcast satellite
 - Internet terminals
 - Digital recorder (TiVo)
 - Interactive TV
 - Music

Game Consoles

- Game consoles:
 - Stand-alone units
 - Display via TV set
 - Fast CPU
 - Graphics co-processors
 - Storage options
- Consoles & PCs require similar audio functions
- Consoles now support DVD playback
- Broadband communications ports will enable streaming media applications in future consoles
Other Consumer Applications

- DAB – Digital Audio Broadcast
- DBS – Direct Broadcast Satellite
- Digital camcorders
- Home theatre
- Home audio
- Car audio
- In-flight audio/video
- Kitchen appliances (!)

FORMATS AND STANDARDS FOR STREAMING AUDIO AND VIDEO
Secret for Success #1:

Select appropriate algorithm(s)

Selecting an Algorithm

- Compatibility with existing content
- Audio/video quality
- Bitrates supported
 - Match network/broadcast bandwidth?
- Resource requirements
 - CPU cycles, memory use
- Cost considerations
 - Licensing fees, royalties
 - Development effort
- May want to support multiple formats
Video Quality

- Display parameters
 - Frame resolution (pixels per frame)
 - Color resolution (# of possible colors)
 - Frame rate (frames per second)
- Visible compression artifacts
 - “Blocking” artifacts
 - Gibbs effect: blurring/shimmer around objects
 - “Ringing” artifacts
- Viewing tests are important

Audio Quality

- Speech quality
 - Is speech intelligible?
 - Can speaker be identified?
 - Is speech natural?
- Music / streaming media quality
 - “CD-quality”: 16 bits, 44.1 kHz
 - Misused term
- Listening tests are important
MPEG Family

- Moving Pictures Experts Group
- Moving pictures + associated audio
- MPEG-1, MPEG-2, MPEG-4
 - MPEG-2 is the most popular video compression technique today
- Ongoing standardization effort (MPEG-7)

MPEG-4 Media Objects

- SCENE
- 2-D BACKGROUND
- MAN
- STOP SIGN
- VAN
- BODY
- ANIMATE FACE
- SOUND
- IMAGE
- SPEECH

www.BDTI.com
Other Video Algorithms

- **Ligos Indeo**
 - Scalable bitstreams:
 - Low-quality preview
 - High-quality, high bandwidth version

- **RealNetworks RealVideo 8**
 - Bitrates from 20 kbps to 0.5 Mbps
 - Frame rate is adjusted according to content and target bandwidth

- **MJPEG, Cinepak**

Audio Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPEG-1</td>
<td>1992</td>
</tr>
<tr>
<td>MPEG-2</td>
<td>1994</td>
</tr>
<tr>
<td>AAC</td>
<td>1997</td>
</tr>
<tr>
<td>MPEG-4</td>
<td>1999</td>
</tr>
<tr>
<td>MPEG-7</td>
<td>2001</td>
</tr>
<tr>
<td>MPEG-21</td>
<td>20xx</td>
</tr>
<tr>
<td>ATRAC (Sony)</td>
<td>1992</td>
</tr>
<tr>
<td>PAC (Lucent)</td>
<td>1992</td>
</tr>
<tr>
<td>AC-3 (Dolby)</td>
<td>1995</td>
</tr>
<tr>
<td>TwinVQ (NTT)</td>
<td>1995</td>
</tr>
<tr>
<td>Coherent Acoustics (DTS)</td>
<td>1996</td>
</tr>
<tr>
<td>MLP (Meridian)</td>
<td>1997</td>
</tr>
<tr>
<td>G2 (RealNetworks)</td>
<td>1998</td>
</tr>
<tr>
<td>WMA (Microsoft)</td>
<td>1999</td>
</tr>
<tr>
<td>Qdesign</td>
<td>1999</td>
</tr>
</tbody>
</table>
Audio Algorithms

- MPEG-1/2 (MP3 = MPEG-1/2, Layer 3)
- MPEG-2 AAC (Advanced Audio Coding)
 - 8 - 96 kHz sample rate, up to 48 channels
- MPEG-4
 - Uses different compression methods for different types of audio signals
- RealNetworks RealAudio 8
 - Frames interleaved across several transmission packets
 - RealNetworks’ algorithms + ATRAC
- Sony ATRAC, Dolby AC-3, Microsoft WMA

Secret for Success #2:

In-depth understanding of algorithm(s) is necessary
HARDWARE
CONSIDERATIONS

Selecting a Processor
…Or Evaluating an Existing One

- Performance Considerations
- Cost Considerations
- Development Considerations
Processor Categories

- **Custom ASICs**
- **ASSPs**
- **DSP Processors**
- **Media Processors**
- **Embedded RISC CPUs**
- **PC CPUs**

Arrows indicate the spectrum from **Fixed Function** to **Fully Programmable**

Generality

Arithmetic Formats

<table>
<thead>
<tr>
<th></th>
<th>Fixed point</th>
<th>Floating point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Cheap</td>
<td>Expensive</td>
</tr>
<tr>
<td>Ease of use</td>
<td>Tricky</td>
<td>Easy</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>Same as precision</td>
<td>Set by exponent: 1500 dB for single-precision IEEE</td>
</tr>
<tr>
<td>Precision</td>
<td>16 bit: 1 part in 64K 24 bit: 1 part in 16 M</td>
<td>Equal to mantissa precision (24 bit for IEEE signal precision)</td>
</tr>
</tbody>
</table>
Secret for Success #3:

Match the processor to the algorithm(s)

Performance Considerations

- Architectural features
 - DSP arithmetic operations
 - Data bandwidth, DSP addressing modes
 - Cache size
 - Bit-field manipulation
 - Control operation efficiency
 - I/O efficiency (e.g., interrupt handling)
- Numeric fidelity
 - Data type(s)
 - Saturation, rounding, scaling, block floating-point
- Power consumption
Resource Requirements

- Video requirements depend on:
 - Image size(s) supported by application
 - Desired frame rate
 - Encoding practices

- Real-time MPEG-2 video decode:
 - Example stream: DVD
 - 720x480 pixels, 30 fps
 - On a VLIW media processor:
 - ~80% of a 166 MHz TriMedia TM32 core

- Memory requirements vary from 100s of kbytes to several Mbytes

Resource Requirements

- Real-time MP3 decode example:
 - On a 24-bit DSP:
 - ~20 MIPS on a Motorola DSP56307
 - ~56 Kbytes total program + data memory

- Real-time Real G2 decode example:
 - On an embedded CPU:
 - ~27 MIPS on an NEC VR5432
 - ~48 Kbytes total program + data memory
Resource Requirements

- Don’t forget other functions:
 - Player application
 - Sample rate conversion, color space conversion
 - Tone controls
 - Rights management, I/O, ...

Secret for Success #4:

Integration lowers costs and simplifies hardware design
Hardware Integration

- Chip cost vs. system cost
- Hardware system components
 - Memory
 - On-chip memory
 - Specialized external memory interfaces
 - I/O
 - Appropriate interfaces (e.g., I²S)
 - On-chip peripherals
- Off-the-shelf device or custom SoC?

SOFTWARE CONSIDERATIONS
Secret for Success #5:

No use reinventing the wheel: utilize available software modules
Operating Systems

- Provide real-time scheduling, task switching, inter-task communication, file system, (maybe) network stack
- Off-shelf candidates
 - Wind River VxWorks (set-top boxes)
 - Symbian EPOC (wireless)
 - Palm PalmOS (PDAs)
 - Microsoft WinCE (PDAs)
 - iObjects Dadio (portable players)
 - Embedded Linux (set-top boxes)

I/O Management Software

- Management of DAC, USB port, etc.
 - Interrupt service routines (ISRs)
 - DMA management
 - Buffering

- Network stack
 - IP, TCP, UDP, RTSP, RTP, ...

- Possible sources:
 - OS vendor
 - Processor vendor
 - Third parties
Player Software

- Responsible for
 - GUI
 - File management (if stored files available)
 - Play, stop, pause, fast-forward, rewind, …
 - Error detection, correction
- Makes calls to decoder, encoder
- Maintains synchronization of audio and video
- Communicates with network

Secret for Success #6:

Create a usable and complete software development environment
Development Considerations

- **Software**
 - Components, modules, applications

- **Architecture**
 - Complexity, data type(s)
 - Compatibility

- **Tools**
 - Compiler
 - Robustness, efficiency
 - Debugger, IDE, development boards, OS
 - Version control

- **Support**
 - From vendor, third parties, consultants

DSP Software Development

- **Not like other kinds of SW development. Why?**
 - Resource-hungry, complex algorithms
 - Severe cost limitations
 - Numeric fidelity
 - Hard real-time constraints
 - Time-to-market constraints

- **Optimization is essential**
Where to Start?

- Standard specifications
- Reference implementation
- Optimized implementation(s)
 - From algorithm vendor
 - From chip vendor
 - From third party developers
- Published papers
 - Often describe optimizations, pitfalls, etc.
- Independent software developers
 - May have valuable experience, expertise, and methodology

Secret for Success #7:

Watch out for outdated or erroneous code, specifications, and documentation
Some Pitfalls to Avoid

- Be wary of publicly available source code
 - May be outdated and/or lack features
 - Audio/video quality may be low
- Be wary of “reference” code
 - May be extremely inefficient
 - May be based on floating-point math
- Be wary of the published spec
 - May be outdated or incomplete
- Be sure to get all errata sheets and updates for spec (and for chip)

Secret for Success #8:

Focus optimization effort where it will be most effective
Software Optimization

- **Divide and conquer**
 - Profile of algorithm execution by function
 - Estimate optimization gain per function
 - Estimate optimization effort per function

- **Optimization techniques**
 - Algorithm transformation/modification
 - Processor-independent software optimization
 - Processor-specific optimization

Optimization Techniques

Algorithm Transformations

- Re-arrange block diagram
 - E.g., down-mix in frequency domain

- Coupling channel
 - E.g., re-calculate vs. store in memory

- Truncate where you can

- Recast or factor iMDCT

- Recast Huffman coding
 - Binary search tree?
 - ROM lookup tables?
Optimization Techniques
Processor-Independent Optimization

- **Strength reduction**
 - Avoid costly operations:

    ```
    int i, k, x[N];
    ...
    for (i=0; i<N; i++)
    x[i] /= k;
    ```

    ```
    int i, k, x[N], oneoverk;
    ...
    oneoverk = (1<<12)/k;
    for (i=0; i<N; i++)
    x[i] = (x[i] * oneoverk)>>12;
    ```

- **Function in-lining**
- **Recycle otherwise idle buffers**

Optimization Techniques
Processor-Specific Optimization

- **Code optimizations**
 - Loop unrolling
 - Change memory map
 - Use specialized instructions
 - ‘C54xx instruction to count 1s, 0s
 - Tricks with bit counter

- **Hardware optimizations**
 - Customize instructions
 - Accelerators and co-processors
Secret for Success #9:

Plan out the testing of the implementation in advance
Testing

- Presents technical challenges
 - Vast amounts of data
 - Development platform limitations
- Audio/video quality
 - Objective measures, subjective tests
 - Varies with type of content
- Modes
 - Sample rates, frame sizes, compression
- Real-time
 - Data-dependent execution time
 - Dynamic processor features

Secret for Success #10:

Give the software “room to grow”
Future-proofing

- Standards & algorithms are evolving
 - New algorithms tend to consume more CPU power and memory than older ones
- Security technology still under development
- Products may need to be field-upgradeable
 - Must support new software downloads
 - Must provide sufficient CPU power and memory for future algorithms

CONCLUSIONS
Conclusions

- Streaming media applications promise to revolutionize communication and entertainment
- Key technologies exist today
 - Broadband connections
 - Algorithms and protocols
 - Inexpensive microprocessors
 - Accessible content & server networks

Conclusions

- Streaming media product design and implementation are extremely challenging
 - Hardware challenges
 - Processor selection
 - Cost limitations
 - Software challenges
 - Demanding algorithms
 - Optimization
 - Testing
 - Audio/video quality requirements
 - Time-to-market
Resources

- BDTI
 - www.BDTI.com
 - *Digital Audio: Applications, Algorithms, and Implementation*
 - *Buyer's Guide to DSP Processors*
- MicroDesign Resources
 - www.MDRonline.com
 - *Microprocessor Report*
 - *Embedded Processor Watch*
- Forward Concepts
 - www.fwdconcepts.com
 - *The Convergence of Audio*
 - *Beyond MP3*