Implementing Embedded Streaming Media: 10 Secrets of Success

Jeff Bier Berkeley Design Technology, Inc. (BDTI)

bier@BDTI.com www.BDTI.com © 2001 BDTI

OUTLINE

- Introduction
- Applications
- Formats and Standards for Streaming Audio and Video
- Hardware Considerations
- Software Considerations
- Additional Considerations
- Conclusions

Challenges of Implementing Streaming Media Products

- Evolving technologies
 - Chips, communications standards
 - Compression formats, rights management
- Competitive market
 - Many players, big and small
 - Overlap between similar applications
- Many complex design considerations
 - Quality and feature selection
 - Cost and time-to-market constraints

Characteristics of (Strict) Streaming Media

- Media carried in packets
- Packets may arrive out of order
- Packets may not arrive at all!
- Network or some intermediary not designed to carry data reliably in real-time
- Starts playing before the entire audio/video clip is downloaded

Internet Applications

- Audio via Internet becoming ubiquitous
- Video via Internet gaining popularity
- Communications products incorporating streaming media
 - E.g., Nokia 9210 Communicator
- By 2003, 50% of Internet access may be via non-PC devices (CEMA)
- Streaming audio may displace traditional radio

Set-Top Boxes

- Devices providing interface to cable, other services
- New applications emerging
- Today, categories overlap:
 - Home theater functions
 - Direct broadcast satellite
 - Internet terminals
 - Digital recorder (TiVo)
 - Interactive TV
 - Music

Game Consoles

- Game consoles:
 - Stand-alone units
 - Display via TV set
 - Fast CPU
 - Graphics co-processors
 - Storage options
- Consoles & PCs require similar audio functions
- Consoles now support DVD playback
- Broadband communications ports will enable streaming media applications in future consoles

SEVA

FORMATS AND STANDARDS FOR STREAMING AUDIO AND VIDEO

12

Video Quality

- Display parameters
 - Frame resolution (pixels per frame)
 - Color resolution (# of possible colors)
 - Frame rate (frames per second)
- Visible compression artifacts
 - "Blocking" artifacts
 - Gibbs effect: blurring/shimmer around objects
 - "Ringing" artifacts
- Viewing tests are important

Audio Quality

- Speech quality
 - Is speech intelligible?
 - Can speaker be identified?
 - Is speech natural?
- Music / streaming media quality
 - "CD-quality": 16 bits, 44.1 kHz
 - Misused term
- Listening tests are important

16

Audio Algorithms

- MPEG-1/2 (MP3 = MPEG-1/2, Layer 3)
- MPEG-2 AAC (Advanced Audio Coding)
 8 96 kHz sample rate, up to 48 channels
- MPEG-4
 - Uses different compression methods for different types of audio signals
- RealNetworks RealAudio 8
 - Frames interleaved across several transmission packets
 - RealNetworks' algorithms + ATRAC
- Sony ATRAC, Dolby AC-3, Microsoft WMA

<section-header><section-header><text>

Selecting a Processor ...Or Evaluating an Existing One

- Performance Considerations
- Cost Considerations
- Development Considerations

www.BDTI.com

March 2002 Page 12

Arithmetic Formats

	Fixed point	Floating point
Cost	Cheap	Expensive
Ease of use	Tricky	Easy
Dynamic range	Same as precision	Set by exponent: 1500 dB for single-precision IEEE
Precision	16 bit: 1 part in 64 K 24 bit: 1 part in 16 M	Equal to mantissa precision (24 bit for IEEE signal precision)

26

Resource Requirements

- Video requirements depend on:
 - Image size(s) supported by application
 - Desired frame rate
 - Encoding practices
- Real-time MPEG-2 video <u>de</u>code:
 - Example stream: DVD
 - ◆ 720x480 pixels, 30 fps
 - On a VLIW media processor:
 - ◆ ~80% of a 166 MHz TriMedia TM32 core
- Memory requirements vary from 100s of kbytes to several Mbytes

Operating Systems

- Provide real-time scheduling, task switching, inter-task communication, file system, (maybe) network stack
- Off-shelf candidates
 - Wind River VxWorks (set-top boxes)
 - Symbian EPOC (wireless)
 - Palm PalmOS (PDAs)
 - Microsoft WinCE (PDAs)
 - iObjects Dadio (portable players)
 - Embedded Linux (set-top boxes)

I/O Management Software

- Management of DAC, USB port, etc.
 - Interrupt service routines (ISRs)
 - **DMA** management
 - Buffering
- Network stack
 - IP, TCP, UDP, RTSP, RTP, ...
- Possible sources:
 - OS vendor
 - Processor vendor
 - Third parties

38

Create a usable and complete software development environment

40

- Tools
 - Compiler
 - Robustness, efficiency
 - Debugger, IDE, development boards, OS
 - Version control
- Support
 - From vendor, third parties, consultants

Where to Start?

- Standard specifications
- Reference implementation
- Optimized implementation(s)
 - From algorithm vendor
 - From chip vendor
 - From third party developers
- Published papers
 - Often describe optimizations, pitfalls, etc.
- Independent software developers
 - May have valuable experience, expertise, and methodology

Secret for Success #7:

Watch out for outdated or erroneous code, specifications, and documentation

www.BDTI.com

44

Software Optimization

- Divide and conquer
 - Profile of algorithm execution by function
 - Estimate optimization gain per function
 - Estimate optimization effort per function
- Optimization techniques
 - Algorithm transformation/modification
 - Processor-independent software optimization
 - Processor-specific optimization

Optimization Techniques Algorithm Transformations

- Re-arrange block diagram
 - E.g., down-mix in frequency domain
- Coupling channel
 - E.g., re-calculate vs. store in memory
- Truncate where you can
- Recast or factor iMDCT
- Recast Huffman coding
 - Binary search tree?
 - ROM lookup tables?

www.BDTI.com

48

Secret for Success #9:

Plan out the testing of the implementation in advance

www.BDTI.com

Embedded Systems Conference © 2002 Berkeley Design Technology, Inc.

March 2002 Page 26

Testing

- Presents technical challenges
 - Vast amounts of data
 - Development platform limitations
- Audio/video quality
 - Objective measures, subjective tests
 - Varies with type of content
- Modes
 - Sample rates, frame sizes, compression
- Real-time
 - Data-dependent execution time
 - Dynamic processor features

Conclusions

- Streaming media applications promise to revolutionize communication and entertainment
- Key technologies exist today
 - Broadband connections
 - Algorithms and protocols
 - Inexpensive microprocessors
 - Accessible content & server networks

Conclusions

- Streaming media product design and implementation are extremely challenging
 - Hardware challenges
 - Processor selection
 - Cost limitations
 - Software challenges
 - Demanding algorithms
 - Optimization
 - Testing
 - Audio/video quality requirements
 - Time-to-market

Resources **BDTI** www.BDTI.com Buyer's Guide to DSP Processors • Digital Audio: Applications, Algorithms, and Implementation Buyer's Guide to DSP Processors MicroDesign Resources www.MDRonline.com Microprocessor Report Embedded Processor Watch Forward Concepts

- www.fwdconcepts.com
- The Convergence of Audio
- Beyond MP3

