

© 2016 Berkeley Design Technology, Inc. Page 1

A Test Drive of the NVIDIA Jetson TX1 Developer Kit for
Deep Learning and Computer Vision Applications

By the staff of

June 2016

 OVERVIEW

The Jetson TX1 module is NVIDIA’s latest processor system-on-module
for embedded applications, based on the Tegra X1 chip. The Jetson TX1
Developer Kit is a low-cost, feature-rich development kit based on the Jetson
TX1 module.

BDTI, a technology analysis firm, used the Jetson TX1 Developer Kit to
develop a deep-learning-based computer vision application—a camera that
recognizes objects—leveraging the popular OpenCV and Caffe software
packages. BDTI also implemented a classical computer vision algorithm on the
Jetson TX1 kit, leveraging software packages provided by NVIDIA. Based on
BDTI’s experience developing the deep-learning-based application and the
classical computer vision algorithm, this report presents an independent
evaluation of the ease of use of the Jetson TX1 kit for new users. This report is
intended for developers and managers interested in an independent perspective
on the Jetson TX1 kit.

Setting up and using the Jetson TX1 Developer Kit was quick and easy.
Within a few days, an engineer with no prior OpenCV or Caffe experience was
able to create a real-time implementation of a smart camera application on the
Jetson TX1 board, making use of GPU-accelerated versions of OpenCV and
Caffe to obtain real-time performance without having to optimize code himself. A
computer vision expert was able to quickly further optimize the deep-learning
application and was able to leverage NVIDIA libraries and SDKs to quickly
implement a classical computer vision algorithm.

© 2016 Berkeley Design Technology, Inc. Page 2

Contents

1. Introduction ... 2
2. BDTI .. 2
3. The Tegra X1 and Jetson TX1 2
4. BDTI’s Evaluation Methodology................. 3
5. Computer Vision, Deep Learning, CUDA . 3
6. BDTI’s Deep Learning Application 3
7. BDTI’s Computer Vision Algorithm 4
8. OpenCV and OpenCV4Tegra 4
9. OpenVX and VisionWorks 5
10. OpenCV4Tegra vs. VisionWorks 6
11. Our Jetson TX1 Development Experience 6
12. Conclusions ... 8
13. References .. 8

1. Introduction
This report is intended to provide an

understanding of what it’s like to get started using
the NVIDIA Jetson TX1 Developer Kit for
developing embedded applications—especially
applications incorporating deep learning and
computer vision.

BDTI, a technology analysis firm, used the
Jetson TX1 Developer Kit to develop a deep-
learning-based computer vision application. BDTI
also implemented a classical computer vision
algorithm on the Jetson TX1, leveraging software
packages provided by NVIDIA. Based on BDTI’s
experience developing the deep learning
application and the computer vision algorithm,
this report presents an independent evaluation of
the ease of use of the Jetson TX1 Developer Kit
for new users.

This brief report is intended for developers
and managers interested in an independent
perspective on the Jetson TX1 kit.

2. BDTI
BDTI is a technology analysis and software

development firm specializing in embedded
computer vision and deep learning applications.
Over the past 24 years, BDTI has performed in-
depth, hands-on evaluations of more than 100
CPUs, DSPs, GPUs FPGAs and associated
development kits and tools. For more information
about BDTI, visit www.BDTI.com. For questions
about this report, email us at info@BDTI.com.

3. The Tegra X1 and Jetson TX1
The Tegra X1 is NVIDIA’s latest system-on-

chip processor for embedded applications. The
Jetson TX1 is NVIDIA’s system-on-module based

on the Tegra X1 chip. The Tegra X1 CPU
subsystem comprises four ARM Cortex-A57
cores. (Four lower-performance Cortex-A53 cores
are also included for lower-power operation in
mobile devices, but are not enabled on the Jetson
TX1 module). The Tegra X1 also features a 256-
core GPU based on NVIDIA’s “Maxwell”
architecture. For compute-intensive applications,
the GPU is the most interesting feature of this
chip. Using NVIDIA’s CUDA technology, the
GPU can be programmed to perform a wide range
of parallel computation tasks in addition to
handling 3D graphics.

The Jetson TX1 Developer Kit is a low-cost
development kit based on the Jetson TX1 module.
It’s the successor to the Jetson TK1 kit, which was
based on NVIDIA’s previous-generation Tegra
K1 chip.

The Jetson TX1 Developer Kit is intended to
enable embedded system and application
developers to evaluate the Tegra X1 processor and
to quickly create embedded applications and
systems. The Jetson TX1 kit is particularly aimed
at developers working in computer vision, deep
learning, robotics and related fields.

The centerpiece of the Jetson TX1 Developer
Kit is the Jetson TX1 development board, shown
in Figure 1. In addition to the Jetson TX1
processor system-on-module, the board is
equipped with a wide range of I/O interfaces,
including USB, HDMI, Ethernet and a general-
purpose I/O header. In addition, the board
includes WiFi and a camera. The board comes

 Figure 1 The Jetson TX1 development board

http://www.bdti.com/
mailto:info@BDTI.com

© 2016 Berkeley Design Technology, Inc. Page 3

preloaded with Ubuntu Linux 14.04 LTS and
drivers supporting the platform.

4. BDTI’s Evaluation Methodology
Since NVIDIA’s CUDA technology is widely

used in computer vision and deep learning, we
expect that many users of the Jetson TX1
Developer Kit will be developing embedded
computer vision applications using deep learning.
Many of these developers will have little or no
experience with embedded processors. They will
want to leverage existing application software and
libraries developed for servers or workstations.

In evaluating the Jetson TX1 Developer Kit,
BDTI followed a process that we believe is typical
of how such developers will use the kit. We began
by defining a representative real-time, deep-
learning-based computer vision application that
relies on open source software. (The application is
described in Section 6.)

We followed what we expect to be the path of
a typical user of the kit: We began by bringing up
the board and configuring it, and then proceeded
with developing and debugging our application.

In addition to the deep learning application,
BDTI evaluated the Jetson TX1 Developer Kit’s
support for classical computer vision algorithms.
BDTI implemented a simple computer vision
algorithm (described in Section 7) using two
different NVIDIA-provided APIs:
OpenCV4Tegra and VisionWorks. With each API
we created an independent implementation of the
algorithm, following what we expect to be the
path of a typical algorithm developer or
implementer.

5. Computer Vision, Deep Learning
and CUDA

“Computer vision” refers to the automated
extraction of meaning from images and video.
Computer vision has been an active field of
research for decades, but until recently has had
few major commercial applications. However,
with the advent of high-performance, low-cost,
energy efficient processors, in recent years it has
become feasible to deploy computer vision in a
wide range of applications spanning mobile
devices, embedded systems, PCs and the cloud [1].
We use the term “embedded vision” to refer to
this new wave of widely deployed, practical
computer vision applications.

Traditionally, computer vision applications
have relied on a diverse range of special-purpose

algorithms painstakingly designed to recognize
specific types of objects (such as faces) and
features (such as shapes). Recently, however,
convolutional neural networks (CNNs) have been
shown to be superior to traditional algorithms for
a range of image classification tasks. In contrast to
traditional vision algorithms, CNNs are
generalized recognition algorithms that are trained
through examples to recognize specific classes of
objects [2][3]. The term “deep neural network” (or
“deep learning”) is applied to neural networks
with more than two layers of neurons—which
includes virtually all neural networks used for
computer vision tasks.

CNNs tend to be very computationally
demanding and contain extensive parallelism. This
makes them natural candidates for acceleration on
parallel processors. With its CUDA technology
(which encompasses the GPU architecture and
application programming interface), NVIDIA
pioneered the use of GPUs as general-purpose
parallel processors. In research environments,
high-performance NVIDIA GPUs are often used
to accelerate both the training phase and the
recognition phase of CNNs. For example, Caffe
[4] is a popular open source deep learning
framework developed at U.C. Berkeley, which is
often used with NVIDIA GPUs on PCs and
servers.

6. BDTI’s Deep Learning
Application

As an example of a typical deep-learning-based
computer vision application, BDTI devised a
smart camera for home monitoring applications.
This device recognizes specific classes of objects
in or around the home and alerts the owner. Such
a device could be used to alert a home owner to
the presence of their pet inside the home, for
example, or to the presence of people outside the
home.
Typical of such applications, BDTI made
extensive use of open source software. In our
application, OpenCV is used for scaling video
frames from the camera to the appropriate size.
Resized video frames are fed into a deep neural
network that has been trained to recognize a large
number of object types. The neural network (a
variation on the AlexNet design [5] , shown in
Figure 2) is implemented using the Caffe open
source framework. For purposes of our
evaluation, the application uses OpenCV to
annotate video frames with its best object

© 2016 Berkeley Design Technology, Inc. Page 4

recognition guesses, and outputs video to the
monitor connected to the Jetson TX1 board in
real time. In an actual product, these outputs
could be used to generate text message alerts, for
example. The software architecture of BDTI’s
deep learning application is shown in Figure 3.

7. BDTI’s Computer Vision
Algorithm

Background subtraction is a classical computer
vision task that is prevalent in video surveillance.
BDTI implemented a simple yet effective
background subtraction algorithm described in [6]
and [7] . A diagram of this background subtraction
algorithm is shown in Figure 4 and example input
and output are shown in Figure 5.

8. OpenCV and OpenCV4Tegra
OpenCV is a popular open source library of

computer vision and related functions
[www.opencv.org]. OpenCV comprises a
comprehensive set of over 2,500 functions ranging
from simple building-block functions such as

matrix arithmetic functions to substantial
computer vision modules such as object detection
and image stabilization. OpenCV enables
developers to quickly implement and test
sophisticated computer vision algorithms. While
all OpenCV functions can execute on a CPU
alone, OpenCV also includes CUDA and OpenCL
implementations of many of its functions, thus
allowing the developer to utilize a GPU in
addition to the CPU. To use these GPU Compute
facilities in OpenCV 2.4.x, one needs to explicitly
invoke certain functions from specific modules,
whereas in OpenCV 3.x the OpenCL
optimizations are more seamlessly integrated.

NVIDIA’s OpenCV4Tegra is a closed-source
port of OpenCV that is optimized specifically for
the Tegra architecture, containing a mix of
OpenGL and CUDA optimizations (OpenGL
acceleration being a legacy of OpenCV4Tegra’s
Android heritage, which never offered CUDA
support). While “plain vanilla” OpenCV includes
some ARM NEON optimizations,
OpenCV4Tegra goes above and beyond with
Tegra specific optimizations in 50+ functions (see

Figure 2 High-level block diagram of the AlexNet convolutional neural network

(Source: Krizhevsky et al. [5])

Figure 3 Software architecture of BDTI’s deep learning application

V4L2 Driver
AlexNet CNN

BVLC Caffe

OpenCV4Tegra

“highgui”

BDTI-developed C++ code
640x480 RGB Frame

Classification Label
USB

Webcam

Live video annotated

with classification label

http://www.opencv.org/

© 2016 Berkeley Design Technology, Inc. Page 5

[9] for a complete list). These Tegra optimizations
are used by default, without requiring the user to
explicitly call GPU-enabled versions of OpenCV
functions. OpenCV4Tegra provides excellent
compatibility with OpenCV, promising seamless
porting of code developed with the open source
OpenCV library.

9. OpenVX and VisionWorks
OpenVX is an open standard from the

Khronos Group aimed at enabling low power
computer vision applications in mobile and
embedded devices [8] . OpenVX consists of a
software framework and a library of common
computer vision building blocks. The OpenVX
framework allows developers to describe their
computer vision algorithms in the form of a
dataflow graph. The framework can then execute
the algorithm with dataflow optimized for the
device architecture. For example, the OpenVX
framework can automatically apply image tiling
techniques to greatly reduce bandwidth to off-chip
memory, improving speed and reducing power
consumption. Because the graph-based
programming approach allows OpenVX to
optimize dataflow, OpenVX promises better
efficiency (higher speed and/or lower power

consumption) compared to the more familiar
programming model of function libraries such as
OpenCV.

NVIDIA’s VisionWorks is a software
development package for computer vision and
image processing. VisionWorks supports
NVIDIA’s Tegra TK1 and TX1, and NVIDIA’s
Kepler and Maxwell generations of discrete
GPUs. At its core VisionWorks is a full-fledged
implementation of the OpenVX standard.
However, NVIDIA provides significant additional
functionality above and beyond the core OpenVX
1.0.1 standard, including:

 A large number of custom OpenVX
extensions that significantly expand the
number of basic building nodes, including
(but not limited to) specialized color
conversion, stereo matching, FAST
keypoint extraction, and Hough shape
detectors.

 NVXIO library for providing sophisticated
rendering tools and wrapping of hardware
codecs for ingest of compressed video
(emanating either from media content on
disk or streamed from USB or IP
cameras).

 A Structure from Motion library, allowing

Figure 4 High-level block diagram of the background subtraction algorithm

Figure 2: Example Background Subtraction Output (left = original frame, right = binary foreground processed frame)

Figure 5 Example input and output of background subtraction

Input

Frame N

Input

Frame N-1

Input

Frame N-2

-

-

Change

Detection

Update

Background

Model

Update

Change

Threshold

Output

Foreground

Mask

© 2016 Berkeley Design Technology, Inc. Page 6

developers to experiment with 3D
reconstruction.

Lastly, the package includes a set of non-trivial
vision sample applications to demonstrate
effective usage of VisionWorks. Figure 6, taken
from the VisionWorks Toolkit Reference
Documentation, illustrates how VisionWorks fits
into the Tegra tool flow.

10. OpenCV4Tegra vs.
VisionWorks

As explained above, OpenCV4Tegra and
VisionWorks are based on OpenCV and
OpenVX, respectively. These complementary
APIs are intended to address different facets of
computer vision application development:
OpenCV is a broad library covering a vast array of
computer vision, image processing, and other
related functions. OpenCV aims to allow
developers to quickly prototype a computer vision
application. In contrast, OpenVX aims to enable
deployment of computer vision applications with
optimal speed and power consumption as
described in Section 9 above. OpenVX provides a
deliberately constrained set of computer vision
and image processing functions.

OpenCV4Tegra is an easier starting point than
VisionWorks for most developers due to its
simpler programming model and breadth of
support of OpenCV functions. Some developers

will find that the Tegra-specific optimizations
provide sufficient performance for their
applications. VisionWorks promises superior
performance and power consumption, at the cost
of a longer learning curve, less intuitive
programming model, and narrower range of
functions.

11. Our Jetson TX1 Development
Experience

Jetson TX1 Setup
To begin experimenting with the Jetson TX1

Developer Kit all that is required after opening the
box is connecting power, keyboard, mouse and
monitor. A USB3 hub is recommended so that a
keyboard, mouse, and USB webcam can be
connected simultaneously to the board. We also
recommend running the Jetson JetPack installer
utility to generate an updated system image before
beginning work with the board.

With keyboard, mouse and monitor connected,
the Jetson TX1 board appears and behaves very
much like an Ubuntu PC. This is not typical of
embedded development boards, and will be
especially welcomed by developers lacking
extensive experience with embedded systems.

Typically, significant effort is required to
generate a system image for an embedded
development board (often requiring compiling the
image from source code) and to install (“flash”)
the image onto the board. NVIDIA’s Jetson
JetPack installer simplifies this process for the
Jetson TX1 board.

Jetson JetPack runs on a host system running
Ubuntu 12.04 or 14.04, and communicates with
the Jetson TX1 board via USB. We installed
JetPack on an Ubuntu 14.04 Virtual Machine, and
it took about 30 minutes to install the OS and
requested packages on the board, with occasional
user input required. Compared to typical
embedded development boards, Jetson JetPack
dramatically reduces the complexity of getting the
Jetson TX1 board loaded with the operating
system and libraries, and also simplifies the
process of updating the OS. The trade-off for this
automation is reduced visibility into the process of
assembling the system image and flashing the
board. We were impressed by how complete and
trouble-free installation, execution and testing
were using Jetson Jetpack. We were left with a
fully configured Jetson TX1 board, ready for
development.

Figure 6 VisionWorks in the Tegra tool flow

© 2016 Berkeley Design Technology, Inc. Page 7

BDTI’s Deep Learning Application
Development

As mentioned earlier, BDTI’s home
monitoring camera application makes use of
OpenCV functions for video frame acquisition
and scaling. For our OpenCV functions on the
Jetson TX1 board we used NVIDIA’s
OpenCV4Tegra. OpenCV4Tegra was installed by
Jetpack, and was simple to use, as it provides the
same API as the generic OpenCV library.

Jetson Jetpack also installed cuDNN, a GPU-
accelerated library of primitives for deep neural
networks, which is used by Caffe and many other
deep learning frameworks to accelerate CNN
execution on NVIDIA GPUs. In addition, Jetson
Jetpack installed a number of example applications
demonstrating GPU performance, the Firefox
web browser and a few typical Ubuntu desktop
applications.

The one difficulty we encountered with the
Jetson TX1 platform itself was that while the on-
board camera worked with GStreamer, we were
unable to get the OpenCV4Tegra VideoCapture
facility to work with GStreamer. Rather than
spend time troubleshooting this, we instead
connected a USB webcam, which was
automatically detected and set up by the operating
system. We verified correct operation of the USB
webcam using the Linux “cheese” utility.

Installation of Caffe was straightforward; in
fact, it was easier to get Caffe up and running with
GPU acceleration compared to getting the same
software running properly on a Ubuntu PC with a
Titan X discrete GPU card. The biggest challenge
in developing our application was getting the USB
webcam working in our C/C++ application.
While GStreamer worked, we were unable to
easily get the USB webcam running with
OpenCV’s VideoCapture module. We instead
ended up using lower-level V4L2 (Video4Linux2)
code to stream frames into our application. We
then instantiated a cv::Mat data structure which
was passed on to Caffe and displayed to the
screen using OpenCV’s “highgui” module.

The complexity of setting up the environment
and developing our application on the Jetson TX1
was comparable to what we experienced on our
Linux workstation. In fact, we simultaneously
performed the same application development
steps using our desktop Ubuntu 14.04 LTS
system. Getting our application up and running on
the Jetson TX1 kit was quicker than doing the
same on our desktop system.

Our deep-learning-based home monitoring
camera application performs live object
recognition at frame rate (30 frames per second),
with data coming in from a USB webcam. The
CNN classification (implemented via the Caffe
framework) clocked in approximately 12.5 ms per
frame, which provides ample headroom to allow
for the kinds of frame pre-processing and other
vision tasks encountered in typical full-blown
vision applications. Note that the 12.5 ms
classification time is based on classifying one
image at a time. By classifying multiple frames at a
time, per-frame classification time can be reduced,
at the cost of increased latency.

BDTI’s Computer Vision Algorithm
Development

We implemented our background subtraction
algorithm in two different ways: first using
VisionWorks and again using OpenCV4Tegra, as
described above.

VisionWorks has a “polished” feel. First,
installation is quite straightforward, simply a
matter of checking the correct boxes during the
Jetson Jetpack installation process. Building the
library components and code samples proceeded
without problems, and all of the samples ran “out
of the box.”

Given that VisionWorks is built upon a
foundation of OpenVX, it makes sense that the
code samples leverage the framework. Reviewing
the provided code samples, we appreciated that (in
contrast to most OpenVX examples found on the
web) these are bona-fide, non-trivial end-to-end
computer vision pipelines. Too often developers
wishing to learn OpenVX encounter basic edge
detection or simplistic image filtering examples
that are too rudimentary to illustrate the
capabilities and nuances of the API. In contrast,
the NVIDIA samples perform real vision tasks,
leveraging OpenVX, and most of the custom
OpenVX extensions that NVIDIA provides as
part of the VisionWorks suite. For example,
NVIDIA includes a feature tracker, stereo
matcher and shape detector samples.

NVIDIA also provides some simpler samples
to demonstrate specific functionality such as
interoperability with various other libraries (e.g.
CUDA, OpenGL, and OpenCV), video playback,
and camera capture.

We faced several complications in
implementing our background subtraction
pipeline with OpenVX. The algorithm operates on

© 2016 Berkeley Design Technology, Inc. Page 8

grayscale (monochrome) video, which is common
in video surveillance, yet ingest of grayscale video
does not seem to be natively supported under
NVXIO. Import of uncompressed single-channel
AVI video failed, as did TIFF grayscale image
sequences (NVXIO returned RGB frames). As a
result, we ended up working with RGB video
input. Fortunately, OpenVX provides a color
conversion node that allowed us to extract
monochrome data from RGB video.

Our background subtraction vision pipeline
accesses a current frame and two delayed frames.
We used an OpenVX delay object to incorporate a
three-frame ring buffer into the frame processing
loop. Unfortunately delay objects are not well
documented in the OpenVX specification, and it
took some trial and error to correctly utilize the
delay object.

In addition, our algorithm uses some pixel-
wise arithmetic that is somewhat awkward to
implement in the form of an OpenVX graph, and
might have required us to implement a custom
OpenVX user node. After some experimentation,
we chose to make direct calls to OpenVX kernels
instead of utilizing OpenVX’s data flow oriented
graph construction. This is not recommended
practice, since the OpenVX framework can
provide much higher performance when executing
a computer vision pipeline defined as a graph. But
this choice allowed us to bypass the subtleties of
the OpenVX specification and quickly get our
code working. We used NVXIO functions to
render the output.

BDTI also developed the same background
subtraction algorithm using OpenCV4Tegra,
without utilizing the VisionWorks framework. In
the OpenCV4Tegra implementation of the
algorithm, all rendering was performed using the
“highgui” OpenCV module, and in contrast to our
VisionWorks implementation of the algorithm we
were able to ingest grayscale video contained in an
AVI file.

OpenVX can in theory deliver better
performance than OpenCV4Tegra due to its
ability to optimize the data flow of user-defined
graphs. However, OpenVX’s graph-based
programming model is not always intuitive to
programmers, especially those accustomed to the
much more straight-forward approach of
OpenCV. Because we did not use OpenVX’s
graph construction capabilities, we were not able
to validate the performance advantage of
OpenVX.

12. Conclusions
Among embedded development kits, the

Jetson TX1 Developer Kit stands out in four
respects. First, developing applications on the
Jetson TX1 board feels more like developing on a
PC than developing on a typical embedded
development board. Second, the Jetson JetPack
installer makes it easy to install a custom-
configured or updated system image on the board.
Third, “out of the box” support for CUDA and a
comprehensive set of associated software
packages (including cuDNN, OpenCV4Tegra, and
VisionWorks) enable developers to seamlessly
leverage GPU compute to accelerate their
applications without having to delve into the
complexities of GPU programming—and
facilitates re-use of existing PC and server code.
Lastly, Jetson TX1 performance on computer
vision and deep learning applications is
impressive; we were easily able to achieve 30
frames per second with our deep learning demo
application—without doing any optimization.
(And, considering the 12.5 ms classification time
of our neural network, it’s likely that the
application would run significant faster than 30
FPS if used with a camera supporting higher
frame rates.)

Overall, setting up and using the Jetson TX1
board was quick and easy. Within a few days, an
engineer with no prior OpenCV or Caffe
experience was able to create an implementation
of a smart camera application on the Jetson TX1
board, making use of GPU accelerated versions of
OpenCV (via OpenCV4Tegra) and Caffe (via
cuDNN) to obtain real-time performance without
having to optimize code himself.

13. References
[1] J Bier. What Can You Do With Embedded Vision?
Embedded Vision Summit presentation, April
2013. http://bit.ly/1QlRGp9

[2] Y LeCun, L Bottou, Y Bengio, and P Haffner.
Gradient-Based Learning Applied to Document
Recognition, Proceedings of the IEEE, Nov. 1998.

[3] Y LeCun. Convolutional Neural Networks,
Embedded Vision Summit presentation, May
2014. http://bit.ly/1NAE7Bh

[4] Y Jia, E Shelhamer, J Donahue, S Karayev, J
Long, R Girshick. Caffe: Convolutional architecture for
fast feature embedding, Proceedings of the ACM
International Conference on Multimedia, 2014.

http://bit.ly/1QlRGp9
http://bit.ly/1NAE7Bh

© 2016 Berkeley Design Technology, Inc. Page 9

[5] A Krizhevsky, I Sutskever, G E. Hinton.
ImageNet Classification with Deep Convolutional Neural
Networks, Advances in Neural Information
Processing Systems 25 (NIPS 2012).

[6] R. Collins, A. Lipton, T. Kanade, H. Fujiyoshi,
Y. Tsin et al., A system for video surveillance and
monitoring: VSAM final report, technical report
CMU-RI-TR-00-12, Robotics Institute, Carnegie
Mellon University, 2000.

[7] Wen-Mei W. Hwu, GPU Computing Gems
(Emerald Edition), Morgan Kaufmann, © 2011,
pp.548-561.

[8] B. Dipert, A. Shoham, P. Desai, V. Eruhimov,
S.H. Lin, OpenVX Enables Portable, Efficient Vision
Software, www.embedded-vision.com, Feb. 2016.
http://bit.ly/1Va11mZ
[9]
http://docs.nvidia.com/gameworks/index.html#t
echnologies/mobile/opencv_known_issues.htm%
3FTocPath%3DTechnologiesa

http://www.embedded-vision.com/
http://bit.ly/1Va11mZ

